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1. Introduction

Data indicate that the mass of the Higgs boson is of the order of the electroweak scale, v ~
O(100)GeV. Such a mass is unnaturally light if there is new physics beyond the Standard
Model (SM) and at a higher scale to which the Higgs boson is sensitive. Generically,
the Higgs mass is not protected by any symmetries and thus gets corrections which are
quadratically dependent on the new physics scale. The phenomenological success of the
SM puts a lower bound on that hypothetical scale of about a few TeV [fl], and it can even
be as large as that at which quantum gravity effects appear, the Planck scale Mpy.
Different scenarios have been devised to eliminate the quadratic sensitivity of the Higgs
mass to the cutoff scale, including: Higgs as a superpartner of a fermion and thus its mass is
only logarithmically ultraviolet (UV) divergent (supersymmetry), or as a Goldstone boson
of a spontaneously broken symmetry (technicolor [B] and little Higgs [B]), or as a component
of a higher dimensional gauge multiplet (gauge-Higgs unification [{-[]). Independently of
the precise nature assumed for the Higgs field, all these proposals require, in one way
or another, the appearance of new physics at about the TeV scale. While the first two



approaches are being intensely studied, in practice they tend to be afflicted by rather
severe fine-tuning requirements when confronted with present data [§. In this work, we
concentrate on the last and less explored possibility [f.

We thus consider theories formulated in more than four space-time dimensions, with
the extra dimensions compactified on tori of generic length L, such that v < 1/L < Mp;.
The idea is that a single higher dimensional gauge field gives rise to the four-dimensional
(4D) fields: the gauge bosons, from the ordinary space-time components, and the scalars,
from the extra ones; the Higgs field should then be identified among the scalars. The
essential point is that, although the 6D gauge symmetry is broken by compactification,
it remains locally unbroken. Any local - sensitive to the UV physics - mass term for the
scalars is then forbidden and the Higgs mass would then have a non-local - UV finite -
origin.

Chiral fermions are an essential ingredient to achieve realistic 4D effective models from
higher-dimensional theories. This requires the introduction of new ingredients in the above

scenario. Two main mechanisms have been explored for chirality:

e Compactification on orbifold [[[(], in which the extra dimensions are compactified on
flat manifolds with singular points.

e Compactification with a background field, either a scalar field (domain wall scenar-
ios) 1], or gauge - and eventually gravity - backgrounds with non trivial field
strength (fluz compactification) [i.

The idea of obtaining chiral fermions in presence of abelian gauge and gravitational
backgrounds was first proposed by Ranjbar-Daemi, Salam and Strathdee [[i], on a 6D
space-time with the two extra dimensions compactified on a sphere. This seminal idea was
also retaken in string theory, more concretely in the heterotic string constructions [[[J].

The avenue explored in this work falls in this category: flux compactification, that is,
compactification in the presence of a gauge background with constant field strength. In
this class of models, the mass splitting between the two chiralities is proportional to the
field-strength of the stable background. That field strength vanishes on a two torus 72 for
simply connected groups such as SU(N), precluding chirality in them. It may be non-zero
instead for non-simply connected groups.

A simple example would be to consider a U(N) theory on 72. As it is well known,
the presence of a stable magnetic background associated with the abelian subgroup U(1) €
U(N) induces chirality. Furthermore, it affects the non-abelian subgroup SU(N) € U(N),
giving rise to a non-trivial ¢” Hooft non-abelian fluz [[[3). The latter induces rich symmetry
breaking patterns. Notice that an analysis of SU(N) is interesting in itself as regards the
Higgs mechanism, as the Higgs field needs to have a non-abelian gauge parenthood in extra
dimensions.

Chirality from a gauge background can be seen as an hyperfine splitting induced by
the field strength. A field theory treatment implies to solve the system in terms of fields
with are charged or neutral with respect to the background, that is, in terms of Landau
and Kaluza-Klein levels, respectively. It is interesting to develop the tools for such a field



theory analysis, as they will be required to analyze the symmetry breaking patterns of
general non-simply connected groups.

A historical field theory example of a theory involving both Kaluza-Klein and Lan-
dau levels is the analysis of the so-called Nielsen-Olesen instability[l4]. They studied a
scenario within only the four usual flat dimensions, in order to justify confinement in
QCD. A SU(2) gauge theory in four dimensions was considered, with a background with
constant field strength, that lived only on two of them and pointed to a fixed direction
in the adjoint representation. They found that it resulted in an effective 2-dimensional
U(1) € SU(2) invariant theory, including a scalar potential with charged (Landau like)
and neutral (Kaluza-Klein like) fields. In the absence of such background, the lightest two
charged “scalars” would be degenerate. In its presence hyperfine splitting follows auto-
matically, though, with those two scalars acquiring squared-masses which are opposite in
sign. One of the masses is tachyonic and thus may induce spontaneous symmetry breaking
“for free”: the U(1) symmetry may be there but hidden. Such phenomenon is called in the
literature Nielsen-Olesen instability. The meaning of the background and the subsequent
instability, in the context of four infinite dimensions, is still a very controversial problem
in the literature [[5.

In the present work, we solve the Nielsen-Olesen instability for a SU(N) gauge theory
on My x T2. That is, we analyze the symmetry breaking induced by the presence of a
background on the torus, which has constant field strength. The latter is assumed to point
along a fixed direction of the adjoint representation and to be a function of the t Hooft
non-abelian flux. Notice, indeed, that although a constant field-strength is a solution of
the equations of the motion, it is not necessarily a minimum of the action and may give
rise to the presence of tachyonic degrees of freedom: the Nielsen-Olesen instability.

It is intriguing to consider whether the Nielsen-Olesen mechanism can be implemented
for the purpose of electroweak symmetry breaking. Instead of enlarging the system so as
to cancel ab initio any possible tachyonic term [LIf], we explore here how a stable vacuum
is reached from the initial configuration and we determine its remaining symmetries, for
the simple toy model in consideration.

Our target is to understand from the field theory point of view the resulting four-
dimensional scalar and vector sector and their symmetries. The field theory tools developed
in this work will be useful and necessary in the future, when considering general non-simply
connected gauge groups and/or higher dimensional (extra-dimensional) manifold.

Explicit field theory analysis of the minima of the effective four-dimensional Lagrangian
in the presence of backgrounds have been attempted in the literature [I4, L] for SU(2),
although in a rather incomplete way, due to the technical difficulties associated to han-
dling simultaneously Kaluza-Klein and Landau levels in interaction. In contrast, we will
take into account the complete effective 4D potential for the case of SU(2), including all
trilinear and quartic interaction terms. This will require to find a gauge-fixing Lagrangian
appropriate when interacting towers of Kaluza-Klein and Landau levels are present, a tool
not previously developed in the literature. As it will be shown, the six-dimensional R
gauge does not correspond to the four-dimensional one. Furthermore, it will be technically
necessary to solve integrals involving two, three and four Kaluza-Klein and Landau levels:



this will be done analitically for all modes. In the present case, they will allow us to com-
pute the four-dimensional potential, find its minima and determine then the spectra and
their symmetries. These technical results could be useful in more general scenarios than
those considered here. For example, it has been suggested that unstable flux configurations
can be associated with unstable intersecting branes configurations [[§]. In this context,
our field theory approach can be seen as a classical approximation of a D-brane decay via
open-string tachyon condensation [[[9].

Were SU(N) the interesting gauge group, the field theory treatment described above
would have been unnecessary, as pure theoretical arguments allow to argue the symmetries
of the stable vacua.

On 72, a background with constant field strength requires coordinate-dependent
boundary conditions for the fields. For the particular case of the gauge group SU(N),
they are gauge equivalent to constant boundary conditions [0, PI]. The symmetries of
the four-dimensional spectra can thus be inferred. The vacuum symmetries depend essen-
tially on whether trivial or non-trivial ‘t Hooft fluxes are present, which translates then
on whether the constant boundary conditions correspond to continuos or discrete Wilson
lines. While much literature is dedicated to the case of continuos Wilson lines, one of the
novel ingredients of this paper is the phenomenological analysis of the pattern of gauge
symmetry breaking and the spectrum of four-dimensional gauge and scalar excitations, for
the general case of SU(NV) and discrete Wilson lines. The results will be shown to be consis-
tent with those obtained from the field theory analysis of the effective Lagrangian, for the
case of SU(2), further supporting the consistency of the field theory approach developed
in this work.

In section 2, general theoretical arguments prove the existence of absolute minima,
for SU(N). Boundary conditions depending on the extra coordinates are shown to be
equivalent to constant ones and the expected symmetry breaking patterns for the stable
vacua are determined. In section 3 the problem is reformulated in terms of the 6D SU(N)
Lagrangian. Next we obtain the complete effective four-dimensional Lagrangian out of
the explicit integration of the 6D Lagrangian over the torus surface, for the SU(2) case;
appropriate gauge-fixing conditions are proposed and developed in detail as well. In section
4 the stable minima of the complete four-dimensional potential and the resulting physical
spectra is identified, for the SU(2) case. The last step of this procedure is done numerically
and the results are then compared with the symmetry breaking patterns expected from
the general theoretical analysis developed in section 2. In section 5 we conclude. The
appendices contain supplementary arguments and develop further technical tools.

2. Vacuum energy

Consider a 6D SU(N) gauge theory, with generators A% defined by Tr[A?A?] = §%°/2 and
[A?, AP] = ifabe)xe. The Yang Mills Lagrangian reads

1

1
['6 = —5 TI“[FMNFMN] = _Z ?MNF;]LMN s (21)



where
Fé v = OuAY — OnAS, + gf A% AS (2.2)

and A9, are the gauge fields in the adjoint representation of the group. Throughout the
paper, Greek (Latin) indices will denote the ordinary (extra) coordinates. The two extra
dimensions are compactified on an orthogonal torus 72, with compactification lengths I,
lo, and area A = [1l5. In what follows, we will denote by x the four Minkowski coordinates
and by y the two extra coordinates.

We assume a constant field strength pointing to an arbitrary direction in gauge space.
We also assume 4D Poincaré invariance. In accordance with it, the background can only
be of the form By = (0, B{(y)). The gauge fields can then be parametrized in terms of
that classical background, B},, and the fluctuations A§,,

Afy(z,y) = By(y) + Ay, y) (2.3)

allowing to decompose the total field strength as

Fin(z,y) =Gyn + Fyn(z,9), (2.4)

with Gy given by
Go, =0, GiY=0, G} =0B}—0B+gf"B!BS. (2.5)

In what follows, B;(y) and G;; will be denoted imposed background and field strength,
respectively, which do not necessarily coincide with those of a true -stable- vacuum config-
uration. The latter will be instead dubbed total.

To live on a torus implies to specify boundary conditions, which describe how fields
transform under translations by l; and ls. Let T; be the embedding of such translations
in gauge space. Upon their action, gauge fields in the adjoint representation can vary at
most by a gauge transformation,

i
An(wy + 1) = Ti(y) An () T/ () + - Ti(w) 0n T (). (26)
Translations T; must, in general, commute up to an element of the center of the group,

Ty y1, y2) Ty Yy, v + bo) To(yy + I, y2) Ti(y1, yo) = 2™ R | (2.7)

where k and m are integers, with m being the 't Hooft non-abelian fluz [[[J], a gauge
invariant quantity constrained to take values between 0 and (N — 1).
Given a set of T;, the possible backgrounds B; are constrained by eq. (B.§), implying

Ap(,y + 1) = Tily) Au(,9) T (1), (2.8)
Far(,y + 1) = Ti(y) Farn (,9) T (), (2.9)
Bj(y +1;) = Ti(y) B;(y) T} (y) + ; Ti(y) 0T} (y), (2.10)
Gun = Ti(y) Gun Tj(y) (2.11)



Instability

For a SU(N) theory on a two-dimensional torus, an expansion around a constant field
strength corresponds to a background configuration that satisfies the equations of motion,
but it is not stable. A simple argument goes as follows. Given a constant Gio, the only
mass term present in the 6D Lagrangian for the 6D field excitations is

—gfcAbAS GL2. (2.12)

Because the background field strength GG12 is a non-zero Lorentz constant, the anticommu-
tativity of f2¢ implies then the presence in the Lagrangian of a field with negative mass,
as can be seen rewriting eq. (R.13) in the diagonal basis.! In other words, the mass matrix
defined by eq. (£.12) is a traceless quantity and, for Gz # 0, it necessarily has at least one
positive and one negative mass eigenvalue.?

The instability argument for a background with constant field strength can be also
discussed from a 4D point of view. The 4D Lagrangian is

L4 = / d%y Lg
TQ

1
— _—/deTr [FanEFYN]
2 Jpe
X | )
-1 / d*y Tt [F,, B + 2F ,;F" + F,;F"). (213)
T2

Our aim is to identify the possible degenerate vacuum solutions consistent with F,,, F** = 0
and compatible with the boundary conditions. 4D Lorentz and 4D translation invariance
on a flat My x 72 manifold also require that, at the minimum, F#* = 0. The third term
in eq. (2.13) is positive semi-definite,

/chy Tr [F;;] > 0. (2.14)

For a SU(N) gauge theory on a 2D torus, the energy is not bounded from below by any
topological quantity.? Consequently, the absolute minimum should correspond to the lower
limit of the inequality eq. (R.14), implying

il
27 Imin

=G4 =0, Vi ja = Gl =Gy + I

Zj|min

=0,  (215)

where eq. (2.4) has been used. In the above and from now on we denote with ~ the
quantities pertaining to the fotal stable vacua, which has vanishing field strength, G7; = 0.
In other words, the original imposed configuration, with constant background field

strength, G7;, is not stable. In order to satisty eq. (B.19) the scalars contained in the 4D

1Other possible mass terms, resulting after fixing the gauge for the excitation fields, only produce
symmetric terms, which cannot cancel the antisymmetric contributions in eq. ()

2This is unlike the U(N) case, for instance, where the U(1) part is not subject to such a constraint.

®Notice the difference between SU(N) and U(N) on T2. In U(N), [ Tr[F;] > (1/4) [,5 |Tr (e F*) %,
which may be non-zero.



potential,
1
V= 5 /Tngy Tr[F} + 2G5 Fyj), (2.16)

will have to develop vacuum expectation values, allowing the system to evolve towards a

stable vacuum. That is, it is to be expected that the system will respond to the imposed

background through a pattern alike to that of 4D spontaneous symmetry breaking.
Furthermore, as the total vacuum energy will correspond to

1
B = [t [ @y iF ) =0, (2.17)
T2

the absolute minima will have to be reached from the initial imposed background through a
pattern of scalar vacuum expectation values which, at the classical level, do not contribute
to the cosmological constant, which thus remains being zero.

The true vacuum

The true vacuum should correspond to a configuration of zero energy, Gun = 0, as ex-
plained above. Let El(y) be such a stable background configuration, whose precise form
remains to be found. El(y) can be interpreted as the sum of the imposed background B;(y)
plus that resulting from the system response. A SU(NN) gauge configuration of zero energy

is a pure gauge and may be expressed by
~ i
Bi(y) = ;U(y)ﬁzUT(y), (2.18)

where U is a SU(IN) gauge transformation. The problem of finding the non-trivial vacuum
of the theory reduces, then, to build a SU(/V) gauge transformation U(y) compatible with
the boundary conditions. Substituting eq. (B.1§) into eq. (P.9), it follows that U must
satisfy

Uy +1) = Ti(y) Uy V', (2.19)
where V; are arbitrary constant elements of SU(N), only subject to the constraint
VitV vy = 2R (2.20)

For SU(N) on a 2D torus, it is always possible [0, 1] to solve recursively the boundary
conditions (R.19) and consequently such an U exists.
Under a gauge transformation S € SU(N), the embeddings of translations transform as

T{(y) = Sy + 1) Ti(y)ST(y) - (2.21)

In order to catalogue the possible degenerate vacua, it is useful to work in a gauge that
we will denote as 6 D-background symmetric gauge: that in which the total vacuum gauge
configuration is trivial, B}Y" = 0. Upon the gauge transformation S = U', with U defined

in eq. (2.19), it results
T = Uy + DLWV = Vi, By"=0. (2.22)



In this gauge the background is then zero and the constant matrices V; coincide with the
boundary conditions. To classify the classical degenerate minima is then tantamount to
classify the possible constant matrices V;. The symmetries of the vacuum correspond to
those generators commuting with all V;. V; can be parametrized as

V; = 2o At (2.23)

with af being arbitrary constants only subject to the consistency condition (R.2(). Two
main cases can occur depending on whether the value of m in eq. (R.7) is equal to zero or
not. Notice that:

e For m = 0, as the embeddings of translations V; commute, it is possible to perform
a non-periodic gauge transformation leading to gauge fields which transform “peri-
odically”, while the boundary conditions are reabsorbed in the vacuum expectation

values of scalar fields (Hosotani mechanism).

e For m = 1, on the contrary, as the V; do not commute, such a transformation to
periodic boundary conditions is not achievable.

2.1 Trivial ’t Hooft flux: m =0

The name reminds that, in this case, the embedding of translations in gauge space commute
and all classical vacuum solutions are degenerate in energy with the trivial vacuum, which
is SU(N) symmetric.

For m = 0, the V; constant matrices commute, constraining the possible \” in eq. (.23)
to belong to the (N —1) generators of the Cartan subalgebra. The vacua are thus character-
ized by 2(N — 1) real continuous parameters af, 0 < a < 1. These al are non-integrable
phases, which only arise in a topologically non-trivial space and cannot be gauged-away.
Their values must be dynamically determined at the quantum level: only at this level the
degeneracy among the infinity of classical vacua is removed [f.

The solution with a¢ = 0 is the trivial, SU(N) symmetric, one. For non-zero af values,
the residual gauge symmetries are those associated with the generators that commute with
V;. As Vj and V, commute, the rank of SU(N) cannot be lowered [RZ] and thus the maximal

symmetry breaking pattern that can be achieved is
SU(N) — u(1)N 1. (2.24)

The spectrum of the 4D fields corresponding to the Cartan subalgebra is that of an ordinary
Kaluza-Klein (KK) tower,

2 o [nf | n3
Mnl,ng = 47T |:ﬁ + g:| ) niy,na S Z; (225)

whereas for the rest of the fields, that is, fields corresponding to generators that do not
commute with all V;, the spectrum is expected to be of the form

(m + 22 ¢°af/2)? L (2t Yect q03/2)?

2 2
=4
17 3

niy,ng

(2.26)




where ¢® are the field charges, expressed in units of the charge of the fundamental repre-
sentation. These type of spectra are characteristic of Scherk-Schwarz symmetry breaking
scenarios [Rd, B3, f, 4.

In the simplest case of SU(2), that will be of interest for us in the following sections,
the two V; matrices may be chosen? to be for instance V; = ™93 and V, = ™23

The mass spectrum for the fields A3, coincides with the KK spectrum (R:2§), whereas
for fields which do not belong to the Cartan subalgebra is is given by

) 2 (n1 + (65} )2 (TLQ + a9 )2
M, =4 Pt ;

(2.27)

as q® = 2 for fields in the adjoint representation. There are no massless modes in this
sector, for non-zero «;. The expected symmetry breaking pattern is thus

SU(2) — U(1). (2.28)
2.2 Non-trivial ’t Hooft flux: m # 0

In this case, all solutions exhibit symmetry breaking, even at the classical level. The
embeddings of translations in gauge space do not commute, eq. (2.7), and the same holds
then for the constant matrices V; [[3, PG, P7. In consequence, the symmetry breaking
pattern lowers the rank of the group [2g).

Furthermore, the consistency condition in eq. (R.7), entails now the quantization of the
«; parameters defining V;. Indeed, it is always possible to choose such V; of the form [9, B(|:

i=Pron (2.29)
‘/2 — PSQ QtQ ’ :
where P = ¢ (N-1)/N diag(1, 627”%, . ,627TiN1\71 ), Qij = eimr(N-1)/N 0ij—1, satisfying PN =

QN = -1 and PQ = e2™/N Q P. The parameters s;, t; are integers that assume

values between 0 and N — 1 and that have to satisfy the consistency condition
S1 tg — 82 tl = m. (230)
Consider for instance the first choice in eq. (.29). It follows that

N _ in(s1+t1)(N—-1)
{“;;N _ eem(sﬁm)(zvq) ]317 (2.31)
implying that the non-integrable phases in eq. (R.2J) are not free parameters, but quan-
tized ones even at the classical level. Let’s define K; = g.c.d.(m,N) and Ky =
g.c.d.(s1, sa, t1, t2, N). Using eq. (R.30), it is possible to prove that Iy < K; and that
K1/K2 € Z. In terms of these two parameters, the residual symmetry group has dimension
(K1 K2 — 1), consistent with the following gauge symmetry breaking pattern [R1]:

K K
SU(N) — SU(K2)%2 x U(1)%

(2.32)

4The direction ¢ = 3 is only a possible choice; obviously the choice of gauge direction in the parametriza-
tion is arbitrary. It bears no relationship with the gauge direction chosen for the imposed background.



For K; =1 (which implies Ky = 1), SU(N) is thus completely broken.
It can be shown that the mass spectrum is arranged along towers of fields [R1] whose
masses can be expressed as

(n1 + Bf/N)? N (n2 + G5 /N)?

(M} )2 = 472 5 5 ,
5 l5

ni,n2

(2.33)

with quantized parameters 3{', as a consequence of eq. (.31), B¢ =0,..,N—1. Some
gauge fields can thus be massless: for K1 > 1, there are (1K — 1) massless modes;
otherwise, if K1 = 1 both 3¢ cannot be simultaneously zero and no massless modes remain.
In summary, these type of spectra are characteristic of constant discrete Scherk-Schwarz
boundary condition scenarios [BJ, BI]: they are alike to the Scherk-Schwarz patterns
obtained for m = 0, albeit with the parameters 8; quantized.

As an illustration, let us particularize again to the SU(2) case. The only possible non-
zero value of m is then m = 1, for which a possible choice for the P and () matrices is
P =03 and Q = i01, with V; given by

{Vlzidg or {Vlzidl (2 34)

Vo =ioq Vo =103
As K1 = K3 = 1, eq. (£.33) entails that the expected symmetry breaking pattern is
SU22) — o,

even at the classical level. Three towers of fields result, with masses given by

[ 1/2)2  n2
4 |1 1/2) +n_22]
ll 12
[ 1/2)2 1/2)2
2 g =4 An? (1 +2/) L (n2 +2/ )] (2.35)
' Iy l5
- ,
o |t (n2+1/2)
dn? | g |
4 2

These expressions allow no zero modes and thus the SU(2) gauge symmetry is indeed
completely broken.®

To conclude this section, we have seen that for SU(N) on a 2D torus, the y-dependent
boundary conditions are equivalent to constant Scherk-Schwarz boundary conditions (V;).
For the case of trivial-’t Hooft flux, m = 0, the treatment shows them to be equivalent
to boundary conditions associated to continuous Wilson lines, while for m # 0 they are
equivalent to boundary conditions associated to discrete Wilson lines.

®With the particular choice in eq. () the three towers in eq. () would correspond to the gauge
directions a = 1, 2, 3, respectively.

,10,



3. The effective Lagrangian theory

In the rest of the paper, we will analyze the pattern of symmetry breaking within a com-
pletely different approach: the identification of the minimum of the effective 4D potential,
after integrating the initial 6D Lagrangian -with a constant background field strength- over
the extra dimensions. To find and verify explicitly the form of the true vacuum, solving the
Nielsen-Olesen instability on the torus, we will obtain the 4D scalar potential and minimize
it. After some general considerations for SU(N), we will treat in full detail the SU(2) case
and compare the resulting spectra with those predicted in the previous section.

3.1 The 6-dimensional SU(N) Lagrangian

The Yang-Mills Lagrangian eq. (2.1]) can be rewritten in terms of the imposed background
and its fluctuations as

1
Lym = —7(Gyn + Fipn)? = £ + L8 + 9 + 29 + £ (3.1)

where the Lagrangian terms corresponding to ¢ = 0, 1, 2, 3, 4 fluctuation fields are, explicitly,

£ = L GG (3:2)
P = —% G (DM AN — DN gMay) (3.3)
£ = (DAY DM AV - Dy Ay DNAM 4 gpieg, AN AN (34)
£5) =~ (DM AN DN AV A a5, (3.5)
) = —i g2 feve pamn Ab AG AM AN (3.6)

The form of Gy was given in eq. (R-5), while
Fiyn = Dy Al — DnASy + g/ AY AR, (3.7)
with Djs being the imposed-background covariant derivative,
Da Ay = 0nAYy — gf e Ay B, (3.8)
satisfying
[Dar, Dy = —igGun - (3.9)

Notice that classically L'S) = 0, as the imposed background satisfies the stationarity con-
dition given by the equations of motion, D%,;GMN = 0, although we will see below this it
is not a stable vacuum configuration.

A possible choice for the imposed background, compatible with constant Gy, is

() = e 2 MmN Yi g
Bz(y)_ €ij g <k+N> A)‘a (3'10)

— 11 —



where A denotes an arbitrary direction in gauge space, leading to

dr(k+%) < 2«
— NN =ZHA. 3.11
JA p (3.11)

The quantity H so defined can be interpreted as a quantized abelian magnetic flux over

G2 =

the torus surface (up to some factors):
1 1
A A

The above choice for Bi is consistent with the follovvlng embeddlngs of translations:

d2 (01By — 0o By) = d2y Gia == HA (3.12)

€;imi(k+T Yi X
Ty(y) = VL (3.13)
which satisfy the conditions in eq. (2.7), when A is chosen as the SU(IN) generator of the
Cartan subalgebra of the form A= diag(1,1,...,1 = N).
The boundary conditions for the fluctuation fields can be most conveniently expressed
choosing the bases in Poincaré space defined by z(z) = (y; + iy2)/v/2 and ALy = (A F

iA%)/v/2 and in gauge space by [Ag, A] = ¢°A%. In these bases,

AL (g1 + L) = ¢ TETRIE 49 (1 )
S (3.14)

AS (1,92 + o) = N A% (y1,92)
Df =0, — giqa , D=0+ % zq® with [DZ,D%] = Hq". (3.15)

The non-commutativity of the imposed-background covariant derivatives, acting on charged
fields, illustrates that translations of arbitrary length along the two extra dimensions do
not commute. In order to determine the physical spectrum, all terms in the Lagrangian in
eqs.. (B.2)-(B.6) will have to be considered.

Total background

Were the Lagrangian formally expanded instead around an hypothetical total minimum
with background By (y), eq. (B-19), and its fluctuations,® the corresponding G psn would
vanish,

~ P~ o~
Gun = §[DM’DN] =0, (3.16)

with Dy given by
DA% = 0y A% — gf AN B, . (3.17)

No tachyonic mass would be present then in the Lagrangian and, to extract the physical
spectrum, it would be enough to consider only terms with two fluctuation fields,

~ 1 ~ ~ ~ ~
LY = —5[Dar A% DM AN — Dypag, DVAM. (3.18)

Below we will explicitly explore the dynamical evolution of the system from the imposed
background Bj(y) to the total stable one, Bas(y), in the SU(2) case.

644, is used throughout the paper to generically denote excitations with respect to the background
included in any definition of the covariant derivative.

- 12 —



3.2 The 6-dimensional SU(2) Lagrangian

We particularize now the discussion to a SU(2) gauge theory, with generators \* = 0%/2,
where ¢ = 1,2,3 and 0% denote the Pauli matrices. The commutativity condition for the
embeddings of translations in gauge space, eq. (2.7), reduces now to the values 1, as m
can take only two values, m = 0,1, while k keeps being an arbitrary integer. A possible
choice for the imposed background is one pointing towards the third gauge direction, i.e.
=03 /2, whose replacement in eqs. (B.10), (B.14), defines the background and boundary
conditions for this case. The gauge indices for fields in the adjoint representation are
a = +,—,3, with

{ AT =L (A +id) o { A} = J5(AY, —iAY)

=5l

B . v , : (3.19)
AT = E()\l — Z)\Q) AM = %(A}\/l +ZA?\/I)

where M = pu,z,Z. For those fields, the charges with respect to the imposed background
are ¢® = +2,—2,0, in units of the charge of the fundamental representation, g5 = 1/2.

Consider the various components of the Yang-Mills Lagrangian, eqs. (B.2)-(B.g), for
the particular case of SU(2). Working in the basis of eq. (B.19), the Lagrangian without
gauge fixing terms can now be explicitly expanded as

£6D = Euu + ['ij + £ui ) (320)
where
1 a v
Loy = =3 Fi FY! (3.21)
1
Lij = 2H (AZ AT — AFAT) + 2 [(0:42)° + (0.42)% — 2 (0. 43) (0:4)] (3.22)
+ [(DzAD)(DzAT) + (D:AD)(D: A7) — (DAL (D=A7) — (DzAT (D2 A7)
_g? %(A;LA; — AFAD) 4 ABAR (AT AD + A AD)
g [ABABATAZ +he] +ig (ATA; — ATAD) (D:A? — D, AY)
+ig [(A3AT — A3AT) (D:A; — D.AZ) —hel] ,
Lui = g* (AT A" (2A3A3 + ATA; + AT AD) + A AL (ATAS + AT AD) (3.23)

— [ADAR(AZAZ + AZAD) + hee] — [ALATAZ AT +heel])

+ig(0, A2 — DA (A" AF — AN AD) + (0, AT — DA (ALAZ — AS°AM)

+(0uA, — DZA;)(AiAgg — ABAT) —h.c)

+O, AT (DA + D: A7) + 0,A, (DAL + DzAT) + 9, A3 (D. A} + Dz A3).
From the 4D point of view, £,,,,, £;; and L,; will generate - after fixing the gauge - the pure
gauge Lagrangian, the scalar potential and the gauge invariant kinetic terms of the scalar
sector, respectively. Notice the term 2H A AT in £;;: it corresponds to a negative mass

squared for the A7 field, which pinpoints the instability of the theory expanded around a
false vacuum.
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Gauge fixing Lagrangian: the R?D gauge

The structure of the £,; term suggests immediately a certain gauge choice compatible

with the boundary conditions, that we will call the RgD gauge. Among all terms in the 6D
)

Lagrangian containing two fluctuation fields, i.e. i
of the A, is of the form

, the only 4D derivative interaction

AL, (D.AZ+ D:A?) (3.24)

and it appears in the last row of £,;. These terms are cancelled by the following choice for
the gauge-fixing Lagrangian

1
cif = 3¢ > [0,k — € (D.AZ + DAY . (3.25)

A warning is pertinent here. Not all terms which lead to 4D mixed terms (bilinears
involving 4D derivatives of gauge fields and scalar fields) will be eliminated through this
gauge choice. Additional 4D mixed terms may result from the cubic couplings appearing
in the third and fourth rows of £,;, if some 4D scalars take vacuum expectation values due
to the instability of the present expansion of the Lagrangian. In other words, the naive
RgD gauge defined above does not match a proper 4D R¢ gauge. We will come back to
this point later on, in subsection 3.4.

3.3 The effective 4-dimensional SU(2) Lagrangian
The 4D Lagrangian,

£ = /T a2y Liz,y), (3.26)
2

will describe the physics of 4D fields, A(Jl\/[(r) (x), defined from

Ay (wy) = DAY (@) O (y), (3.27)

with the extra-dimensional wave functions f*") satisfying the boundary conditions

T my¥2 ga
{fa(”(y1+l1,yz) = TN pa) (g yp)

i (3.28)
fa(r)(yhyQ +1l) =e (N )y f“(”(yhyz) )

and r referring to the infinite towers of 4D modes. Depending on their gauge charge, fields
are neutral (a = 3) or charged (a = %) with respect to the imposed background, and may
be arranged in 4D KK towers (r = nj,ng) for the former and Landau levels (r = j) for the
latter.

The shape of the extra-dimensional wave functions depends exclusively on the bound-
ary conditions, encoded in the covariant derivative. That is, the wave functions depend on
the gauge index (whether neutral or charged with respect to the background), but do not
depend on its Lorentz index (whether 4D vectors or scalars).
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Neutral fields

For neutral fields, the covariant derivatives D; reduce to ordinary (commuting) derivatives.
For the 4D vectors Ai(m’m)(x), the following masses result

(0205 + 9:0.) f2 ") (y) = m3 (i) S (mm2) (), (3.29)
where
n? n2
m% (n1,n2) = 4’ <l_21 + l_22> ) (3.30)
1 2

while the eigenfunctions are given by

f3(n1,n2)(y) — i e27ri (nl%lJrnQ%) .

VA

The mode Ai(O,O) () remains massless at this level, as it would for a residual U(1) symmetry.
For neutral scalar fields, the quadratic mass terms in the R?D gauge, eqs. (B.29)
and (B.25), lead to the following 4D Lagrangian after integration over the extra dimensions,

(3.31)

neutral 1 G —ni,—n ni,mn —ni,—n ni,mn
(ﬁgljD)2 =3 Z mg(m,nz){A( 1, 2)(35)14( 1, 2)(m)+§a( 1, 2)(35)@( 1, 2)(35)}’

n1,n2=—00

where A("172) () and a(""2) () are the mass eigenstates,

amm2)(g) = _7; <ei9(n17n2>A§ (n1m2) () 4 6_’0(”1’”2),42(7"1’7"2)(x)) , (3.32)
A @) = (e AL ) s AN ) | (338
. 10y no) — 21 .
with e¥(n1.n2) = Mi3(ny mg) (7—11 +’L7—22> .

In the absence of instability, A"2)(z) would be the physical neutral scalar fields,
while a("1"2) (1) would play the role of pseudo-Goldstone bosons, eaten by the Ai(m’m) (x)
to acquire mass. Notice that indeed the quantity D,A2 4+ D; A3 appearing in the gauge
fixing condition, eq. (B.23), can be expressed in terms of the scalars a(™:m2) alone:

(o]
DzAg + DZAE == Z M3(n1,n2) a(nth)(x) f(n1,n2)(y) : (3'34)
ni,ne=—00
Notice as well that it does not exist a pseudo-Goldstone boson with nqy = no = 0, which
is consistent with the fact that Ai(o’o)

mass.

has not received, at this level, a contribution to its

Charged fields

To determine the Landau energy levels, define as usual creation and destruction operators
a and af, for charges ¢& = +2,

_ i _ i o
a+ = _\/ﬂ DE 5 a_ = \/ﬂDz 3
4= iipm 4 pe (3.35)
+ = T VeH TR - T V2H TE
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which satisfy commutation relations
[ai,aH —1. (3.36)

Defining as well the number operator j(i) = azi)a(i), it results that charged fields A]\i/l(j) ()
get at least partial contributions to their masses from the term

—(DEDS + DED2) £ (y) = m2 ) £ (y), (3.37)

with ¢ = + and mass eigenvalues given by

)

4 (k +

|3

mi ;) =2H(2j+1) = (25 +1), (3.38)

where j integer > 0.

That is, for charged fields the commutator in eq. (B.9) does not vanish and in con-
sequence no zero eigenvalues are expected. In other words, while neutral fields can be
simultaneously at rest with respect to the two extra dimensions, charged fields cannot, as
a charged particle in a magnetic field moves. The energy levels are Landau levels. Notice
as well that the mass scale is set by the torus area, the 't Hooft non-abelian flux m and
the integer k, while it is independent of the 6D coupling constant g.

The associated extra-dimensional wave functions,

1 N
FHO0 (g ) = 24\ (=) mapp (3.39)
Bly) /2751

S — 7 (yotnla+22)2 2mi(dntp) YL 2md pla
X e hf2 il e 0 H; — (y2 +nlp+ =

P Il d

n=—oo

are derived explicitly in appendix [A].

The opposite-charge field is f_(j’p) (x,y) = (f+(j’p)(x, y)>* Obviously, f+(j’p) and f_(j’p)

satisfy the boundary conditions in eq. (B.2§).
The quantity d in eq. (B.39) is defined by

qu(k:—i—%), (3.40)

and signals degeneracy. Notice the index p: generically, the tower of Landau levels may
be defined by another quantum number [@] in addition to j. p sweeps over these extra
degrees of freedom,

0<p<d—1, (3.41)

and its possible values signal degenerate energy levels, as the latter are independent of p,
see eq. (B.3§) above. For a field of given charge ¢ (i.e, ¢ = 2 and ¢ = 1 for fields in the
adjoint and fundamental representation of SU(2), respectively), the degree of degeneracy
is given by d. As discussed in appendix [A], d is necessarily an integer, which for SU(2)
reduces to either d = gk or d = q(k + %), depending on the value of m.
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While 4D charged vectors Aff(j ) get only mass contributions from eq. (B.3§) above,
charged scalars receive further contributions from quadratic terms in eq. (B.22). Working
in the RED gauge, eq. (B.2]), and, after diagonalizing the system, we obtain

d—1 00

charged * . *

(ﬁij)g = E { 2H HO,p(x)Hoyﬂ(x) —2H E :(2] + 1)Hj,p(x) ijp(x)
p=0 J=1

—£2H ) (25 + DI (x) hj,p(x)} . (3.42)
j=0
This Lagrangian has been written in terms of the following mass eigenfunctions:
Ho p(z) = —Az (),
hop(x) = Az (@),
H; () = ;A2 V50 (@) 4 A7 U710 (),

hyp(z) = ¢ A7 I (@) 4 5547 U100 (2) (3.43)
where ¢; = cosf; = % and s; = sinf; = ﬁ, with j > 1. Hp,(x) denotes the

4D field (or fields, when p takes several values) with negative mass(es) —2H and hq ,(z)
its unphysical scalar partner(s), eaten -at this level- by the A: (0:p) (x) field(s) to become
massive.”

In the absence of the instability induced by the negative mass, H; ,(x) would be the
physical charged scalar fields, while h; ,(x) would play the role of pseudo-Goldstone bosons,
eaten by the A,}L (:0) (z) fields to acquire mass. Indeed, the gauge fixing condition can be
expanded as

d—1 oo
DA + D:zA; =iY > majhy,(x) f00(y). (3.44)
p=0j=1
Notice as well that this result holds for any value of j, including j = 0, since A,ﬁ (0.0) (x) has
taken a contribution to its mass after compactification, as a consequence of its interaction
with the imposed background.

The Lagrangian exhibits thus a behavior that could correspond to the breaking
SU(2) — U(1), although the presence of the tachyon Hj ,(x) signals that the true vac-
uum remains to be found. The remaining analysis can be technically simplified working in
the RED gauge with £ = oo: the would-be goldstone fields a(z) and h(x) disappear then
from the analysis, and results will be given for this case. However, before proceeding to it,
let us briefly discuss another gauge-fixing choice, alternative to that used above.

3.4 The R!P gauge

3
An appropriate gauge choice, also compatible with the boundary conditions, is
1 ~ ~ 2
oot = 3¢ 3 [6“/15 .y (DzAg + D;Ag)] , (3.45)
a
"The tachyon Hy,, could also be correctly denoted H_1 ,, as a j = —1 state, extending the definition

given for the Hj , fields. We have refrained from doing so, though, with the aim of beautifying the notation.
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where now D; is the total covariant derivative defined in eq. (B.17), corresponding to a
stable background. Notice the analogy with the analysis in the previous subsections in
terms of the RgD gauge, eq. (B-28). The choice in eq. (B.45) guarantees the elimination
of all 4D scalar-gauge crossed terms stemming from the last three rows of £, eq. (B.29),
including those resulting after spontaneous symmetry breaking. It is then a true R gauge
from the four-dimensional point of view.

In this gauge, it is trivial to formally identify the terms in the 6D Lagrangian which
will give rise to the masses of the different type of 4D fields: gauge bosons and their replica,
physical scalars and “would be” goldstone bosons:

1. Gauge boson masses will result from

1 ~ ~ ~ ~
Lo = —5 Ay, |D.Ds+ D:D.| - ant, (3.46)

where a, b are the indices in the adjoint representation.

2. Physical, £-independent, scalar masses will stem from

1 /~ - 2
Lo, = =5 (D-A¢ - Dsat)
1 —-D:D: D:D Ab
= —— (A%, A% ETE IR o (3.47)
2 D.D: -D.D.) \ A
a
Because [D.,D;] = 0 (see eq. (B-1)), the eigenvalues of this matricial equation

produce the following mass contributions to scalar fields:

A]\4Z?hysical = % [ﬁzﬁ? + ﬁzﬁz] ) (3.48)
A]\4920ldstone = 0.

Comparison with eq. (B.4() shows that it is generically expected to find a scalar
partner for each 4D gauge boson, degenerate in mass.

3. Finally, the £-dependent scalar masses will result from,

¢ _ S (5 a4 D.AC 2
‘Cmass - 2 <D2Az + DZAz)
1 DD DsD Ab
— Z (A% AC _FF AR Z . 3.49
2 (43, 43) (DZDz DZD2> , (AQ) (3.49)

Once again, because 52 and 55 commute, the eigenvalues of L'?nass will result in

mass contributions

2
AM;

oldstone —

S Nolvn

AM,

]?hysical (350)
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The coincidence between the eigenvalues expected for the gauge and “would be” gold-
stone boson masses is a characteristic of hidden non-abelian symmetries. The larger de-
generacy among the three sectors -gauge, physical scalars and unphysical scalars- is related
to the fact that total field strength of the stable vacuum is zero. In consequence the coor-
dinate dependent conditions are equivalent to constant ones, as shown in section 2, which
discriminate among gauge charges, not among Lorentz indices.

In the next section, we will follow the dynamical evolution of the system towards a
stable vacuum, determining the minimum of the 4D potential and obtaining the physical
spectra in both the RéD and RgD gauges.

4. The minimum of the 4-dimensional potential

Below, we will obtain the effective 4D potential for SU(2), minimize it and find the
physical spectra. The results will be compared with the theoretical expectations developed
in section 2.

We have first integrated the 6D Lagrangian, eqs. (B.21])-(B.23), plus the gauge-fixing
term, eq. (B.29) or eq. (B.49), over the 2D torus surface, obtaining in this way all effective
4D couplings among the towers of states. In ordinary compactifications, i.e. without back-
ground with constant field strength, a good understanding of the 4D light spectrum only
requires to consider the lightest KK states and their self-interactions. With the inclusion
of such background, this is no more the case due to the simultaneous presence of KK and
Landau levels. Cubic and quartic terms link a given neutral (KK) field to an infinity of
charged (Landau) levels, and viceversa. Previous analysis of scenarios with background
with constant field strength, such as the original Nielsen and Olesen one [[[4], as well as
subsequent studies [[[7], have typically included only quartic interactions of the lowest 4D
charged level (i.e. the tachyon), with at most the addition of the tower of only one type of
replica. However, we will show that it is necessary to consider many modes and all types
of interaction between KK and Landau levels, for a true understanding of the system.

For quadratic terms, the integration over the torus reduces to the use of the orthogo-
nality relations for the bases of extra-dimensional wave functions. The inclusion of cubic
and quartic interactions requires the evaluation of integrals with three and four extra-
dimensional wave functions. We have solved them analytically in the general case. The
results can be found in appendix [B, together with the completeness relationships linking
them. The latter have been checked as well numerically up to a precision better than 1075,

We have then proceeded to look for the minima of the potential. Let us previously
recall the theoretical expectations. As the true vacuum should have total zero energy, see
eq. (B-17), the stable minimum of the SU(2) 4D potential should correspond to a dynamical
reaction of the system of the form

2H 47 m
FL(2,9) | imin = —Gia = v g—AUH_ E)’ (4.1)

so as to cancel the contribution of the imposed background. That is, the following value
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for the minimum of the 4D potential is expected (see eq. (R.16)):

1 87 m
Vin = 9 /T2 dy [(F132(9C7y))2 + 202152 F132(m,y)] lmin = _gz—A (k+ 5)2- (4.2)
We analyze below whether the minimum of our 4D effective potential does converge towards

such values. Three comments on the procedure are pertinent:

1. The determination of the set of vacuum expectation values that minimizes the po-
tential can only be done numerically. Starting with the inclusion of only the lightest
fields of the KK and Landau towers, heavier replicas of both types will be successively
added and the corresponding minimum determined at each step. The total number
of neutral and charged replica to be included in the analysis is determined requiring
that the minimum of the potential reaches an asymptotically stable regime.

2. For technical and theoretical reasons, we will present our results in the two gauges
previously described: the RgD gauge, for the particular case £ = oo, and the general

RéD gauge. This will allow precise checks of the gauge invariance of the results.

3. In order to keep as low as possible the degeneracy of states, while analyzing the two
possible non-trivial setups, the numerical results will be confined to two cases: a)
m =0,k =1and b) m =1, k = 0. Furthermore, all numerical results presented
below correspond to an isotropic torus,® i1 = ls.

4.1 Non-trivial ’t Hooft flux: m=1, k=0

This case corresponds to a non-trivial 't Hooft flux, in which the generators of the trans-
lation operators T; anti-commute. The fields in the Landau towers are not degenerate, as
d = 1in eq. (B.40): the index p become thus meaningless and it will be obviated all through
this Subsection.

Let us illustrate with a simple argument how the system dynamically approaches the
true vacuum and the need of including rather high neutral and charged modes. Consider for
the moment only the charged scalar zero mode, Hy (i.e. the tachyon), the lightest neutral
scalar Ai (09 and their interactions. The effective 4D potential is then simply given by:

2
2, 9 ;4 4 2 43(0,0 3(0,0
V = —2H [H(@)] + 5 I [Ho(@)* + | Ho(a)? 4300 (2) A2 (@), (43)
with 184) referring to the 4-point integral between the lightest charged states.” One can
immediately recognize in eq. (f£3) the classical mexican-hat potential, with its minimum
corresponding to:
2H

< |Ho(z)? > = rroll A3 (g) s=c 4300y 5 = 0. (4.4)
974o

8The anisotropic case will be considered in a future work.
9The general definition of the 3-point and 4-point integrals is given in appendix . Here I(g4) is an
abbreviated notation for the integral Igl) [0,0,0,0,0,0,0,0] defined there.
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Figure 1: Values of the minimum of the scalar potential as heavier degrees of freedom are included.
Triangles (stars) represent the numerical results obtained in the Rggoo (R‘gD ) gauge. The horizontal
dashed line represents the theoretically predicted value for the potential minimum, in the non-trivial
't Hooft flux case.

In this simplified example, only the charged scalar (i.e.the tachyon) acquires a non vanish-
ing vacuum expectation value (vev) while the neutral fields remain unshifted. Using the
numerical value 1/ 10(4) = (0.85.4), it results:'0
2H? 272

Vinin = —92784) ~ —0.85 x FA (4.5)
which is still quite different from that predicted by eq. (.2). Moreover, it is enough to add
the interactions with either the next neutral or charged levels to observe the appearance of
tadpole terms. That is, the true minimum of the system does not correspond then anymore
to the vevs obtained in eq. ([£4), but all fields get new shifts instead.

We found that generically all charged and neutral fields in the two towers get wvewvs.
Figure (f) shows the dynamical approach to the true minimum by the successive addition
of heavier charged modes (labelled by j = 0,...,7 in the horizontal axis) and heavier
neutral modes (labelled with ny = ny = 0,...,3), for both the RéD and R?BOO gauges.
For example, the point labelled with n; = ng = 1 and j = 3 represents the numerical
calculation where all degrees of freedom up to ny = ny = 1 and j = 3 are included. The
graphic shows that the value of the minimum of the scalar potential does converge to the
theoretically predicted value of —272/(g?A): for ny = ny > 1 (> 5 neutral complex fields)

10The dimensions of the quantities in eq. (Q) are [H] = [I{Y] = [E?] and [¢] = [E™"].
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Figure 2: Lightest gauge mode mass. Triangles (stars) represent the numerical results obtained
in the Rggoo (RgD ) gauge. The horizontal dashed line represents the theoretically predicted value
in the non-trivial 't Hooft flux case.

and j > 3 (> 4 charged complex fields) a precision over 1% is achieved, in both gauges; for
n1 =ng =3 and j = 7, it reaches 1075 (10~7) for the RSQOO (RZlD) gauge.

As regards the symmetries of the spectrum, the numerical results confirm that the
SU(2) symmetry is completely broken. This is well illustrated by figure B, where the
lightest vector state is shown to be asymptotically massive. The horizontal dashed line
represents the mass value of 0.25 (in units of 472/ .A), theoretically predicted in eq. (2.39).
An excellent agreement is observed as well between the calculations in the two gauges after
the levels up to n; = ns > 1 and j > 3 are included. We have thus explicitly proved that
the SU(2) symmetry is completely broken.

In figure [} the full spectrum of the 4D vector fields is displayed, with all fields up to
ny = ng = 3 and 5 = 7 included in the estimation, in the R‘gD and Rglz)oo gauges. No
visible difference can be noticed. This result is a strong numerical proof of the consistency
of our effective 4D Lagrangian, and its manifest gauge invariance when a sufficient number
of heavy degrees of freedom are included.

Finally, figure ] retakes the full spectrum, resulting from the diagonalization of the
complete system, in the RéD gauge: gauge bosons (stars), physical scalars (empty triangles)
and unphysical scalars (full triangles), with the latter corresponding to the choice £ = 0.
Superimposed, the figure shows as well (black dots joined by a full line) the theoretical
prediction for constant discrete Scherk-Schwarz boundary conditions, eq. (R.3H). Notice
that:
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Figure 3: Gauge invariance of the gauge spectrum for the non-trivial 't Hooft flux case. Triangles
(stars) represent the numerical results obtained in the Rg:DOO (RgD ) gauge respectively, for ny =
ng =3 and j =7.

e Each 4D vector boson has a physical scalar partner degenerate in mass, as expected

in the asymptotic limit from eqs. (B.46) and (B.49).

e The unphysical scalar spectrum -which constitutes half of the scalar spectrum- is
identified as those fields which appear to have zero mass, as expected for “pseudo-
goldstone bosons” eaten by the vector fields to acquire masses.!! A slight numerical
mismatch only appears for the masses of the pseudo-goldstone fields of the heavier
modes, as the numerical truncation of the tower of states starts to be felt

e The coincidence between the numerical results -obtained with y-dependent boundary
conditions- and the spectrum predicted for constant discrete Scherk-Schwarz bound-
ary conditions (black dots) is very good up to the first 20 modes (i.e. around M? ~ 3
in the units chosen for illustration). The agreement of the overall scale, as well as
the expected four-fold degeneracy of the first two massive levels and the eight-fold
degeneracy of the next one, are clearly seen. Only the higher levels start to show
disagreement with the theoretical formulas. This is as it should be, as the present
numerical analysis was restricted to charged levels up to j = 7 and neutral ones up
to ny = ne = 3. Indeed, the next mode non-included in the numerical analysis would

1 As stated, this numerical spectrum has been computed for £ = 0, but it can also be viewed as corre-
sponding to the £-independent contributions to the goldstone masses for any &, as it follows from eq. )
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Figure 4: Full spectrum for the non-trivial 't Hooft flux case, in the Rgfo—gauge. Gauge bosons
(stars), physical scalars (empty triangles) and unphysical scalars (full triangles) are shown. The
minimization procedure includes all charged and neutral modes up to ny = ne = 3 and j = 7. Black
dots joined by a full line represent the theoretically predicted masses derived in section 2.2.

be j = 8, which has a squared mass M? ~ 2.7. In consequence, the numerical results
and the theoretical prediction start to diverge around this scale. The mode j = 8
sets the limit of validity of the present numerical analysis, while a better agreement
can be reached including higher modes.

We have also computed the physical spectrum in the RELD gauge by another procedure:
the direct substitution of the vevs obtained from the numerical minimization into the total

covariant derivatives in eqs. (B.40) and (B.4§). The coincidence with the numerical results
shown above is so precise that it would be indistinguishable within the drawing precision.

4.2 Trivial ’t Hooft flux: m =0, k=1

Consider now the case of trivial 't Hooft flux, in which the generators of the translation
operators T; commute. The simplest non-trivial configuration of this type'? corresponds
tom =0 and k = 1. A two-fold degeneracy of the charged (Landau) levels is then present,
as d = 2 in eq. (B.40) and p = 0,1. In consequence, due to the higher number of states,
the numerical treatment is more cumbersome than in the previous Subsection.

The dynamical approach to the minimum of the 4D potential can be seen in figure [{.
Again it shows how the asymptotic regime is reached with the successive addition of heavier
charged and neutral fields. The dashed horizontal line represents the theoretical predicted

12That is, with lowest degeneracy.
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Figure 5: Values of the minimum of the scalar potential as heavier degrees of freedom are included.
Triangles (stars) represent the numerical results obtained in the RSP (R‘gD ) gauge. The horizontal
dashed line represents the theoretically predicted value for the potential minimum, in the trivial ’t
Hooft flux case.

value, —872/g%A, as expected from eq. (f.2): for ny = ng > 1 (> 5 neutral fields) and
j > 3 (> 4 charged fields) a precision over 1% is achieved, both in the Rgg - gauge and in
the RgD gauge. In the best case that we could numerically evaluate for the Rgg o Zauge
(n1 =mng =3, j =T), a precision of O(107%) has been obtained.

As regards the expected spectra, recall from Subsection 2.1 that all possible solutions
should correspond to either unbroken SU(2) symmetry or a SU(2) — U(1) breaking pat-
terns, all of them being degenerate in the absence of quantum corrections and fermions.
All numerical results obtained here turn out to correspond to SU(2) — U(1) breaking ex-
amples. This is well illustrated by figure [ where the mass of one (and only one) vector
state is seen to vanish asymptotically, in agreement with the lightest value predicted in
eq. (B29) for a; # 0. That state is the 4D gauge vector boson of the unbroken U(1)
symmetry. The figure also shows clearly that if only the first few light levels of the KK
and Landau towers would have been considered in the analysis, the lightest state would
have looked massive, suggesting a fake SU(2) — @ breaking pattern. Only the inclusion
of higher charged and neutral levels allows to attain the asymptotic regime, unveiling then
the remaining U(1) symmetry. Numerically, the agreement with the theoretical prediction
starts to be satisfactory for ny = no > 1 and j > 3, analogously to the case with non-trivial
't Hooft flux in the previous Subsection.

It is worth pointing out that the U(1) symmetry of the total stable vacuum selects,
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Figure 6: Lightest gauge mode mass. Triangles (stars) represent the numerical results obtained
in the Rggoo (RgD ) gauge. The horizontal dashed line represents the theoretically predicted value
in the trivial 't Hooft flux case.

in general, a different gauge direction, in SU(2) space, than that of the imposed abelian
background. In other words, it may be a different U(1) symmetry than that naively exhib-
ited by the Lagrangian, when expanded around the imposed background. The neutral and
charged towers of fields, as defined by the latter, have recombined dynamically, to select
the final stable symmetric direction.

Figure [ shows two gauge spectra obtained numerically including all modes up to
ny = no = 2 and j = 7, for the two gauges Rggoo (triangles) and RéD (stars). Notice
the difference with the analogous figure obtained for the m = 1 case, figure [ at first
sight, one could think that the test of gauge invariance fails in the present case. This is
not the case, though: the two spectra turn out to correspond to different values for the
set of arbitrary parameters o, as, in eq. (R.27), which parametrize the possible Scherk-
Schwarz spectra. We determined the values chosen by the minimization algorithm in these
examples, performing a two-parameter fit to the first 20 masses obtained from the numerical
procedure. The x? value of the fit is extremely significant for both gauges. It resulted in

the values a; = ag = 1/2 for the example shown in the R?i)oo

gauge, as can be easily
deduced from the observed boson multiplicity. Conversely, for the RgD gauge calculation,
the minimization algorithm selected a; = 0.334 and as = 0.219, to which it corresponds the
observed lower multiplicity of degenerate fields. Examples corresponding to other values
have also been obtained, although not illustrated here. The existence of different spectra

for the same symmetry breaking pattern is generic of Scherk-Schwarz compactification at
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Figure 7: Gauge boson spectra for the trivial 't Hooft flux case. Triangles (stars) represent the
numerical results obtained in the Rggoo (RgD ) gauge respectively, for ny = ng =2 and j = 7. In
this example, the two spectra turn out to correspond to different sets of (a1, a2) values: (1/2,1/2)
(triangles) and (0.33,0.22) (stars).

the classical level.

In figure | we retake the gauge (stars), physical scalar (empty triangles) and unphysical
scalar ( full triangles) spectra, in the RéD gauge, for the same «a; values than in the previous
figure, and with the unphysical scalar masses computed for £ = 0. Due to the degeneracy
of the Landau levels, the numerical analysis could only be performed including modes up
ton; = ng = 2 and j = 7. The masses of the unphysical scalar degrees of freedom tend, as
before, to vanish -as they should- as the asymptotic regime is approached. For the heavier
modes, a slight numerical mismatch appears between the masses of the vector fields and
those of their physical scalar partners. A corresponding tiny mass for the unphysical scalar
partners is also observed. This discrepancy is again consequence of the truncation error.
Apart form this subtlety, physical scalar and gauge masses are in excellent agreement.

Moreover, the agreement between the numerical spectra and the theoretically predicted
one - typical of Scherk-Schwarz breaking and represented in figure § with black dots joined
by a full line - is very good up to the first 40 modes (i.e.around M? ~ 4 in the units
chosen). This scale sets the validity limit for the present numerical analysis of our low-
energy effective 4D theory. A better agreement above this scale could be obtained adding
higher modes. Once again, the mass of the next non-included mode, the j = 8 mode, is
M? ~ 5.4 and coincides with the scale at which the numerical masses and the theoretical
predicted ones start to diverge.
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Figure 8: Numerical results for the trivial 't Hooft flux case, in the RgD -gauge. Gauge bosons

(stars), physical scalars (empty triangles) and unphysical scalars (stars) are shown. The minimiza-
tion procedure includes all the charged and neutral modes up to n; = ny = 2 and 5 = 7. Black
dots joined by a full line represent the theoretically predicted masses derived in section 2.1, for the
case a1 = 0.33, ag = 0.22.

Finally, we have also computed the physical spectrum in the RéD gauge by another
procedure: the direct substitution of the vevs obtained from the numerical minimization
into the total covariant derivatives in eqgs. (B.44) and (B.4§). The coincidence with the
numerical results shown above is so precise that it would be indistinguishable within the

drawing precision.

In summary, in this section we have thus explicitly shown, for the 6D SU(2) gauge
group compactified on a 2D torus, that a stable vacuum of zero energy is reached, out of the
initial unstable configuration. To solve the system with y-dependent boundary conditions
has been shown to be tantamount to solve it with constant boundary conditions. For the
case of non-trivial 't Hooft flux, the pattern of symmetry breaking obtained is SU(2) — &
and it corresponds to Scherk-Schwarz symmetry breaking with discrete Wilson lines. For
trivial 't Hooft flux, the patterns found correspond to SU(2) — U(1) and are equivalent
to Scherk-Schwarz symmetry breaking with continuous Wilson lines.

5. Conclusions and outlook

Boundary conditions depending upon the extra coordinates are equivalent to constant ones,
for SU(N) on a two-dimensional torus. For trivial ’t Hooft flux, they are equivalent to
constant Scherk-Schwarz boundary conditions, associated to continuous Wilson lines. For
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the case of non-trivial ’t Hooft flux, the coordinate-dependent boundary conditions can
be traded instead by constant Scherk-Schwarz boundary conditions, associated to discrete
Wilson lines, resulting always in symmetry breaking. One of the novel features of this
work is the study of the phenomenological implications of this last scenario, studying the
pattern of gauge symmetry breaking and the spectrum of the four-dimensional vector and
scalar excitations.

Chirality cannot be implemented within a SU(NN) background and will require to
consider in the future non-simply connected groups. For them, the equivalence between
coordinate-dependent and constant boundary conditions does not hold in general. A field-
theory treatment of the system subject to coordinate dependent boundary conditions is
then necessary to solve the details of the four-dimensional spectrum. We start this ap-
proach in the present work by treating also explicitly the case of SU(2) on a torus with
background.

We have explicitally solved the Nielsen-Olesen instability on the two dimensional torus.

For the obtention of the four-dimensional effective Lagrangian, all couplings have been
taken into account, including all quartic and cubic terms mixing Kaluza-Klein and Landau
levels. Those terms are shown to be essential in the determination of the stable minimum of
the potential and its symmetries. The corresponding integrals over the extra-dimensional
space have been obtained analytically for all modes, for the first time. Furthermore, we
have defined gauge-fixing Lagrangians, appropiate when both Kaluza-Klein and Landau
levels are simultaneously present and interacting. We found that the naive R gauge
defined in six dimensions is then not equivalent to the R¢ gauge in four dimensions. The
computations have been performed in different possible gauge choices and the issue has
been clarified in depth. These technical tools will be necessary when groups other than
SU(N) will be considered.

The system is seen to evolve dynamically from the unstable background configuration
towards a stable and non-trivial background of zero energy. This happens through an
infinite chain of vacuum expectation values of the four-dimensional scalar fields. The
resulting spectra do show explicitly the symmetries expected from the theoretical analysis
mentioned above, for the case of SU(/V) with constant boundary conditions.

It turns out that for each four-dimensional gauge boson there exists a scalar partner
degenerate in mass, both for trivial and non-trivial ‘t Hooft fluxes. This is one of the
important phenomenological drawbacks that the approach has to face. The scenario has
to be enlarged then, for instance including more than just one scale in the theory. Indeed,
a motivation for the present work was the hypothetical identification of the Higgs field
as a component of a gauge boson in full space, which would make its mass insensitive
to ultraviolet contributions, unlike in the Standard Model. To find a realistic pattern of
electroweak symmetry breaking, which matches the spectra found in nature, remains a
non-trivial issue.
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A. Landau levels

In this appendix we derive the wave functions for the Landau levels on a 2D torus [B4],
with charge ¢ > 0, defined as the solutions of the eigenvalue problem

ahay fFO(y) = jH0(y), (A1)

where ai and a4 are given in eq. (3.35). They obey the boundary conditions

FO + 1) = SR HO), (A-2)
FrOy + 1) = T O ), (A3)

where d = ¢ (k: + %) It is easy to compute first the zero mode, satisfying
ay fTU0(y) =0 (A4)

and, subsequently, obtain all the heavier solutions by recursively applying the creation

FHED() = /j% ol frO)y). (A.5)

A possible ansatz for the wave function f* (=0 (y), compatible with the periodicity condi-

operator al:

tion along the direction y; in eq. (A.9), is

FrU=0(y) = Z cn(yz)e”dzﬁ_?;ezmn% ) (A.6)

n=—oo

The periodicity condition along the direction ys, eq. (A-), implies that d must be an integer
and the coefficients ¢, (y2) must satisfy the periodicity condition:

cn(Y2 +12) = cnralye) - (A.7)

The coefficients ¢, (y2) are explicitly obtained after the substitution of eq. (A.f) into
eq. (A4), giving

2w d 2mn
32%(2/2) = <_Ey2 - T) Cn(y2)a (A-8)
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with solution

wd 2 27n

Cn(ya) = Ape HRT 0L (A.9)

The coefficient A,, is determined by the periodicity condition for the ¢,(y2), eq. (A7),
implying

1
Appa = Age ™0 O (A.10)
whose solution is
_pl2n?
A, =bye 1 d | (A.11)

where the constants b, satisfy b,+q = b,. It exists, therefore, d arbitrary constant coeffi-
cients and, consequently, d independent solutions for the zero mode. We will characterize
them by the integer number p, p =0,...,d — 1, as described in section 3.

All in all, the lightest wave function can be written as

d—1
FrO=0(y) =3 b, fHU=0(y), (A.12)
p=0
where b, are arbitrary coefficients subject to the normalization condition
d—1
> lbl? =1, (A.13)
p=0

and the functions f+U=%0)(y) are given by

1 00
FHE=00 () = <_§d ) ! > o T (wabnla+ £2)? 2mildn+p) T i uie (A.14)
I3
n=-—00
Notice that for d > 1 the different independent solutions f* ) (y) are localized at different
points of the extra dimensions.

Finally, the expression of the heavier modes resulting from eq. (A.5) reads:

1
. 2d \* (—i) ;zd
+(4;p) _ [ == N0 iy Yiy2
F7) (li’ lz) NOE

- *Ld(y2+nlz+pl—2)2 27 YL (dn+p) 2md pZQ
R L P N PRy

)

lilo

n=—oo

(A.15)

with Hj ,(y) being the Hermite polynomials.
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B. Integrals

We summarize the integrals of the extra dimensional wave functions, necessary to explicitly
obtain the effective coefficients of the 4D theory.

e Two-field integrals:

o f3 (n1,n2) f3 (ml’mQ)de = 5n1,—m1 5n27—m2 ) (B'l)

/T2 f+(jl,p1)f*(j2,p2)d2y = 0j1.j2 Opr.po » (B.2)

where f3(1m2) and f+0r) are respectively given by eq. (3.31) and eq. (3.39).

e Three-field integrals:
if 22" & 7,

I(g)[j1’p17j2’p27n17n2] — AQ f+(j17p1) f_ (j27P2) fg(n17n2) d2y — 07 (B?))
else
. . R 5 pin2  __mnay _x n3 2y v/ 71!72!
I® [y, p1, ja, p2,n1,na] = \/AQG T e e Qd(RJarl)W (B.4)

2 [2 Min[k,j1—2k1] ng 1)k1zjl+k‘ 2k1—2ko
g—

x> Z F e a— R)! (1 — 2k — g (R —Fg)]

k=0 k1=0
no TR
X H jy 4 k—2k) —2k» [\/?(\/— +Z\/—n1>:| o k|:2 7”1} ;
where .A = lllQ and R = lg/ll.
e Four-field integrals with two charged and two neutral fields:

INLl1s prs o, p2. 1, gy iy, ma) = /T2 froven) p= e p3lmna) gdtmmz) g2y (B.5)

= 1(3)[J'1,P1,j2,,02,711 + my,ng + mg] .

e Four-field integrals with four charged fields:

when M&;m@ ¢ 7,

I v, prs G. o2, 3, P3. Jas pa] = - frUve) = Gzpz) piises) p=nes) g2y

~0, (B.6)
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C []1=P17]2=P27]3=P37]47P4] A 9Jj1+i2+i3+ja

else

V dR ‘/31'32'33'34 Z *ﬂ'dR P1— P2 ) (Pl;ﬂ47p)2:|
p7k_7oo
j1 j2 js  ja Min|ki,k2] Min[ks, k4] 9zo—21Hkitkz (k’l 1 ko _221)|5k‘1+k2 —221

k3tka—2z2
. Z Z Z Z Z Z 211201 (51— k1) (J2 — k2) ! (3 — K3)! (Jia — )

k1=0ko=0k3=0ks=0 21=0 20=0

Hj, p, [— \/wdR<k+p+%>] Hjy [— va(—““%)]
(kl —21)!(/€2—21)!(]{3—2’2)!(/{?4—22)!

+pa—2 -
< H\ g [\/ﬂdR(k—i-p—i-W)] Hj 1, [\/wdR(—k+p+p4 d”)] .

X

(B.7)

The integrals above are related by the following completeness relationships, which we

have checked numerically up to a precision better than 1076.

e e}

Ié)[jl7p17327p27j37p3aj47p4] = Z 1(3)[]1=P17]2=P27n17n2]1(3)[]37P3=]47P4a_’nla_'n2]

ni,ne=—00

(B.8)
d—1 oo

4) . . . . .
IGLLi, p1sas 2y ma,ma, ma) 1= 1901, p1, 4, py 1, ol IOV [f, p, Gz, p2, o, o) .

p=0 j=0
(B.9)
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