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1. Introduction

Data indicate that the mass of the Higgs boson is of the order of the electroweak scale, v ∼
O(100)GeV. Such a mass is unnaturally light if there is new physics beyond the Standard

Model (SM) and at a higher scale to which the Higgs boson is sensitive. Generically,

the Higgs mass is not protected by any symmetries and thus gets corrections which are

quadratically dependent on the new physics scale. The phenomenological success of the

SM puts a lower bound on that hypothetical scale of about a few TeV [1], and it can even

be as large as that at which quantum gravity effects appear, the Planck scale MPl.

Different scenarios have been devised to eliminate the quadratic sensitivity of the Higgs

mass to the cutoff scale, including: Higgs as a superpartner of a fermion and thus its mass is

only logarithmically ultraviolet (UV) divergent (supersymmetry), or as a Goldstone boson

of a spontaneously broken symmetry (technicolor [2] and little Higgs [3]), or as a component

of a higher dimensional gauge multiplet (gauge-Higgs unification [4 – 7]). Independently of

the precise nature assumed for the Higgs field, all these proposals require, in one way

or another, the appearance of new physics at about the TeV scale. While the first two
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approaches are being intensely studied, in practice they tend to be afflicted by rather

severe fine-tuning requirements when confronted with present data [8]. In this work, we

concentrate on the last and less explored possibility [9].

We thus consider theories formulated in more than four space-time dimensions, with

the extra dimensions compactified on tori of generic length L, such that v ≪ 1/L ≪ MPl.

The idea is that a single higher dimensional gauge field gives rise to the four-dimensional

(4D) fields: the gauge bosons, from the ordinary space-time components, and the scalars,

from the extra ones; the Higgs field should then be identified among the scalars. The

essential point is that, although the 6D gauge symmetry is broken by compactification,

it remains locally unbroken. Any local - sensitive to the UV physics - mass term for the

scalars is then forbidden and the Higgs mass would then have a non-local - UV finite -

origin.

Chiral fermions are an essential ingredient to achieve realistic 4D effective models from

higher-dimensional theories. This requires the introduction of new ingredients in the above

scenario. Two main mechanisms have been explored for chirality:

• Compactification on orbifold [10], in which the extra dimensions are compactified on

flat manifolds with singular points.

• Compactification with a background field, either a scalar field (domain wall scenar-

ios) [11], or gauge - and eventually gravity - backgrounds with non trivial field

strength (flux compactification) [7].

The idea of obtaining chiral fermions in presence of abelian gauge and gravitational

backgrounds was first proposed by Ranjbar-Daemi, Salam and Strathdee [7], on a 6D

space-time with the two extra dimensions compactified on a sphere. This seminal idea was

also retaken in string theory, more concretely in the heterotic string constructions [12].

The avenue explored in this work falls in this category: flux compactification, that is,

compactification in the presence of a gauge background with constant field strength. In

this class of models, the mass splitting between the two chiralities is proportional to the

field-strength of the stable background. That field strength vanishes on a two torus T 2 for

simply connected groups such as SU(N), precluding chirality in them. It may be non-zero

instead for non-simply connected groups.

A simple example would be to consider a U(N) theory on T 2. As it is well known,

the presence of a stable magnetic background associated with the abelian subgroup U(1) ∈
U(N) induces chirality. Furthermore, it affects the non-abelian subgroup SU(N) ∈ U(N),

giving rise to a non-trivial t’ Hooft non-abelian flux [13]. The latter induces rich symmetry

breaking patterns. Notice that an analysis of SU(N) is interesting in itself as regards the

Higgs mechanism, as the Higgs field needs to have a non-abelian gauge parenthood in extra

dimensions.

Chirality from a gauge background can be seen as an hyperfine splitting induced by

the field strength. A field theory treatment implies to solve the system in terms of fields

with are charged or neutral with respect to the background, that is, in terms of Landau

and Kaluza-Klein levels, respectively. It is interesting to develop the tools for such a field
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theory analysis, as they will be required to analyze the symmetry breaking patterns of

general non-simply connected groups.

A historical field theory example of a theory involving both Kaluza-Klein and Lan-

dau levels is the analysis of the so-called Nielsen-Olesen instability [14]. They studied a

scenario within only the four usual flat dimensions, in order to justify confinement in

QCD. A SU(2) gauge theory in four dimensions was considered, with a background with

constant field strength, that lived only on two of them and pointed to a fixed direction

in the adjoint representation. They found that it resulted in an effective 2-dimensional

U(1) ∈ SU(2) invariant theory, including a scalar potential with charged (Landau like)

and neutral (Kaluza-Klein like) fields. In the absence of such background, the lightest two

charged “scalars” would be degenerate. In its presence hyperfine splitting follows auto-

matically, though, with those two scalars acquiring squared-masses which are opposite in

sign. One of the masses is tachyonic and thus may induce spontaneous symmetry breaking

“for free”: the U(1) symmetry may be there but hidden. Such phenomenon is called in the

literature Nielsen-Olesen instability. The meaning of the background and the subsequent

instability, in the context of four infinite dimensions, is still a very controversial problem

in the literature [15].

In the present work, we solve the Nielsen-Olesen instability for a SU(N) gauge theory

on M4 × T 2. That is, we analyze the symmetry breaking induced by the presence of a

background on the torus, which has constant field strength. The latter is assumed to point

along a fixed direction of the adjoint representation and to be a function of the ’t Hooft

non-abelian flux. Notice, indeed, that although a constant field-strength is a solution of

the equations of the motion, it is not necessarily a minimum of the action and may give

rise to the presence of tachyonic degrees of freedom: the Nielsen-Olesen instability.

It is intriguing to consider whether the Nielsen-Olesen mechanism can be implemented

for the purpose of electroweak symmetry breaking. Instead of enlarging the system so as

to cancel ab initio any possible tachyonic term [16], we explore here how a stable vacuum

is reached from the initial configuration and we determine its remaining symmetries, for

the simple toy model in consideration.

Our target is to understand from the field theory point of view the resulting four-

dimensional scalar and vector sector and their symmetries. The field theory tools developed

in this work will be useful and necessary in the future, when considering general non-simply

connected gauge groups and/or higher dimensional (extra-dimensional) manifold.

Explicit field theory analysis of the minima of the effective four-dimensional Lagrangian

in the presence of backgrounds have been attempted in the literature [14, 17] for SU(2),

although in a rather incomplete way, due to the technical difficulties associated to han-

dling simultaneously Kaluza-Klein and Landau levels in interaction. In contrast, we will

take into account the complete effective 4D potential for the case of SU(2), including all

trilinear and quartic interaction terms. This will require to find a gauge-fixing Lagrangian

appropriate when interacting towers of Kaluza-Klein and Landau levels are present, a tool

not previously developed in the literature. As it will be shown, the six-dimensional Rξ

gauge does not correspond to the four-dimensional one. Furthermore, it will be technically

necessary to solve integrals involving two, three and four Kaluza-Klein and Landau levels:
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this will be done analitically for all modes. In the present case, they will allow us to com-

pute the four-dimensional potential, find its minima and determine then the spectra and

their symmetries. These technical results could be useful in more general scenarios than

those considered here. For example, it has been suggested that unstable flux configurations

can be associated with unstable intersecting branes configurations [18]. In this context,

our field theory approach can be seen as a classical approximation of a D-brane decay via

open-string tachyon condensation [19].

Were SU(N) the interesting gauge group, the field theory treatment described above

would have been unnecessary, as pure theoretical arguments allow to argue the symmetries

of the stable vacua.

On T 2, a background with constant field strength requires coordinate-dependent

boundary conditions for the fields. For the particular case of the gauge group SU(N),

they are gauge equivalent to constant boundary conditions [20, 21]. The symmetries of

the four-dimensional spectra can thus be inferred. The vacuum symmetries depend essen-

tially on whether trivial or non-trivial ‘t Hooft fluxes are present, which translates then

on whether the constant boundary conditions correspond to continuos or discrete Wilson

lines. While much literature is dedicated to the case of continuos Wilson lines, one of the

novel ingredients of this paper is the phenomenological analysis of the pattern of gauge

symmetry breaking and the spectrum of four-dimensional gauge and scalar excitations, for

the general case of SU(N) and discrete Wilson lines. The results will be shown to be consis-

tent with those obtained from the field theory analysis of the effective Lagrangian, for the

case of SU(2), further supporting the consistency of the field theory approach developed

in this work.

In section 2, general theoretical arguments prove the existence of absolute minima,

for SU(N). Boundary conditions depending on the extra coordinates are shown to be

equivalent to constant ones and the expected symmetry breaking patterns for the stable

vacua are determined. In section 3 the problem is reformulated in terms of the 6D SU(N)

Lagrangian. Next we obtain the complete effective four-dimensional Lagrangian out of

the explicit integration of the 6D Lagrangian over the torus surface, for the SU(2) case;

appropriate gauge-fixing conditions are proposed and developed in detail as well. In section

4 the stable minima of the complete four-dimensional potential and the resulting physical

spectra is identified, for the SU(2) case. The last step of this procedure is done numerically

and the results are then compared with the symmetry breaking patterns expected from

the general theoretical analysis developed in section 2. In section 5 we conclude. The

appendices contain supplementary arguments and develop further technical tools.

2. Vacuum energy

Consider a 6D SU(N) gauge theory, with generators λa defined by Tr[λaλb] = δab/2 and

[λa, λb] = ifabcλc. The Yang Mills Lagrangian reads

L6 = −1

2
Tr[FMNFMN ] = −1

4
Fa

MNFMN
a , (2.1)
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where

Fa
MN = ∂MAa

N − ∂NAa
M + gfabcAb

MAc
N , (2.2)

and Aa
M are the gauge fields in the adjoint representation of the group. Throughout the

paper, Greek (Latin) indices will denote the ordinary (extra) coordinates. The two extra

dimensions are compactified on an orthogonal torus T 2, with compactification lengths l1,

l2, and area A = l1l2. In what follows, we will denote by x the four Minkowski coordinates

and by y the two extra coordinates.

We assume a constant field strength pointing to an arbitrary direction in gauge space.

We also assume 4D Poincaré invariance. In accordance with it, the background can only

be of the form BM = (0, Ba
i (y)). The gauge fields can then be parametrized in terms of

that classical background, Ba
M , and the fluctuations Aa

M ,

Aa
M (x, y) = Ba

M(y) + Aa
M (x, y) , (2.3)

allowing to decompose the total field strength as

Fa
MN (x, y) = Ga

MN + F a
MN (x, y) , (2.4)

with GMN given by

Ga
µν = 0 , Ga

µi = 0 , Ga
ij = ∂iB

a
j − ∂iB

a
j + gfabcBb

i B
c
j . (2.5)

In what follows, Bi(y) and Gij will be denoted imposed background and field strength,

respectively, which do not necessarily coincide with those of a true -stable- vacuum config-

uration. The latter will be instead dubbed total.

To live on a torus implies to specify boundary conditions, which describe how fields

transform under translations by l1 and l2. Let Ti be the embedding of such translations

in gauge space. Upon their action, gauge fields in the adjoint representation can vary at

most by a gauge transformation,

AM (x, y + li) = Ti(y)AM (x, y)T †
i (y) +

i

g
Ti(y) ∂MT †

i (y) . (2.6)

Translations Ti must, in general, commute up to an element of the center of the group,

T−1
2 (y1, y2)T−1

1 (y1, y2 + l2)T2(y1 + l1, y2)T1(y1, y2) = e2πi(k+ m
N

) , (2.7)

where k and m are integers, with m being the ’t Hooft non-abelian flux [13], a gauge

invariant quantity constrained to take values between 0 and (N − 1).

Given a set of Ti, the possible backgrounds Bi are constrained by eq. (2.6), implying

AM (x, y + li) = Ti(y)AM (x, y)T †
i (y) , (2.8)

FMN (x, y + li) = Ti(y)FMN (x, y)T †
i (y) , (2.9)

Bj(y + li) = Ti(y)Bj(y)T †
i (y) +

i

g
Ti(y) ∂jT

†
i (y) , (2.10)

GMN = Ti(y)GMN T †
i (y) . (2.11)
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Instability

For a SU(N) theory on a two-dimensional torus, an expansion around a constant field

strength corresponds to a background configuration that satisfies the equations of motion,

but it is not stable. A simple argument goes as follows. Given a constant G12, the only

mass term present in the 6D Lagrangian for the 6D field excitations is

−gfabcAb
1A

c
2 G12

a . (2.12)

Because the background field strength G12 is a non-zero Lorentz constant, the anticommu-

tativity of fabc implies then the presence in the Lagrangian of a field with negative mass,

as can be seen rewriting eq. (2.12) in the diagonal basis.1 In other words, the mass matrix

defined by eq. (2.12) is a traceless quantity and, for G12 6= 0, it necessarily has at least one

positive and one negative mass eigenvalue.2

The instability argument for a background with constant field strength can be also

discussed from a 4D point of view. The 4D Lagrangian is

L4 =

∫

T 2

d2yL6

= −1

2

∫

T 2

d2y Tr [FMNFMN ]

= −1

2

∫

T 2

d2y Tr [FµνF
µν + 2FµiF

µi + FijF
ij] . (2.13)

Our aim is to identify the possible degenerate vacuum solutions consistent with FµνF
µν = 0

and compatible with the boundary conditions. 4D Lorentz and 4D translation invariance

on a flat M4 × T 2 manifold also require that, at the minimum, Fµi = 0. The third term

in eq. (2.13) is positive semi-definite,

∫

T 2

d2y Tr [F2
ij ] ≥ 0 . (2.14)

For a SU(N) gauge theory on a 2D torus, the energy is not bounded from below by any

topological quantity.3 Consequently, the absolute minimum should correspond to the lower

limit of the inequality eq. (2.14), implying

Fa
ij |min ≡ G̃a

ij = 0, ∀ i, j, a ⇒ G̃a
ij = Ga

ij + F a
ij |min = 0 , (2.15)

where eq. (2.4) has been used. In the above and from now on we denote with ∼ the

quantities pertaining to the total stable vacua, which has vanishing field strength, G̃a
ij = 0.

In other words, the original imposed configuration, with constant background field

strength, Ga
ij , is not stable. In order to satisfy eq. (2.15) the scalars contained in the 4D

1Other possible mass terms, resulting after fixing the gauge for the excitation fields, only produce

symmetric terms, which cannot cancel the antisymmetric contributions in eq. (2.12).
2This is unlike the U(N) case, for instance, where the U(1) part is not subject to such a constraint.
3Notice the difference between SU(N) and U(N) on T2. In U(N),

R

T 2 Tr [F2
ij ] ≥ (1/4)

R

T 2 |Tr (ǫµνF µν)|2,

which may be non-zero.
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potential,

V =
1

2

∫

T 2

d2y Tr[F 2
ij + 2Gij Fij ] , (2.16)

will have to develop vacuum expectation values, allowing the system to evolve towards a

stable vacuum. That is, it is to be expected that the system will respond to the imposed

background through a pattern alike to that of 4D spontaneous symmetry breaking.

Furthermore, as the total vacuum energy will correspond to

Etot =
1

2

∫
d4x

∫

T 2

d2y Tr[F2
ij |min] = 0 , (2.17)

the absolute minima will have to be reached from the initial imposed background through a

pattern of scalar vacuum expectation values which, at the classical level, do not contribute

to the cosmological constant, which thus remains being zero.

The true vacuum

The true vacuum should correspond to a configuration of zero energy, G̃MN = 0, as ex-

plained above. Let B̃i(y) be such a stable background configuration, whose precise form

remains to be found. B̃i(y) can be interpreted as the sum of the imposed background Bi(y)

plus that resulting from the system response. A SU(N) gauge configuration of zero energy

is a pure gauge and may be expressed by

B̃i(y) =
i

g
U(y)∂iU

†(y) , (2.18)

where U is a SU(N) gauge transformation. The problem of finding the non-trivial vacuum

of the theory reduces, then, to build a SU(N) gauge transformation U(y) compatible with

the boundary conditions. Substituting eq. (2.18) into eq. (2.6), it follows that U must

satisfy

U(y + li) = Ti(y)U(y)V †
i , (2.19)

where Vi are arbitrary constant elements of SU(N), only subject to the constraint

V −1
1 V −1

2 V1 V2 = e2πi(k+ m
N

) . (2.20)

For SU(N) on a 2D torus, it is always possible [20, 21] to solve recursively the boundary

conditions (2.19) and consequently such an U exists.

Under a gauge transformation S∈SU(N), the embeddings of translations transform as

T ′
i (y) = S(y + li)Ti(y)S†(y) . (2.21)

In order to catalogue the possible degenerate vacua, it is useful to work in a gauge that

we will denote as 6D-background symmetric gauge: that in which the total vacuum gauge

configuration is trivial, B̃sym
M = 0. Upon the gauge transformation S = U †, with U defined

in eq. (2.19), it results

T sym
i = U †(y + li)Ti(y)U(y) = Vi , B̃sym

M = 0 . (2.22)
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In this gauge the background is then zero and the constant matrices Vi coincide with the

boundary conditions. To classify the classical degenerate minima is then tantamount to

classify the possible constant matrices Vi. The symmetries of the vacuum correspond to

those generators commuting with all Vi. Vi can be parametrized as

Vi ≡ e2πiαa
i λa

, (2.23)

with αa
i being arbitrary constants only subject to the consistency condition (2.20). Two

main cases can occur depending on whether the value of m in eq. (2.7) is equal to zero or

not. Notice that:

• For m = 0, as the embeddings of translations Vi commute, it is possible to perform

a non-periodic gauge transformation leading to gauge fields which transform “peri-

odically”, while the boundary conditions are reabsorbed in the vacuum expectation

values of scalar fields (Hosotani mechanism).

• For m = 1, on the contrary, as the Vi do not commute, such a transformation to

periodic boundary conditions is not achievable.

2.1 Trivial ’t Hooft flux: m = 0

The name reminds that, in this case, the embedding of translations in gauge space commute

and all classical vacuum solutions are degenerate in energy with the trivial vacuum, which

is SU(N) symmetric.

For m = 0, the Vi constant matrices commute, constraining the possible λa in eq. (2.23)

to belong to the (N−1) generators of the Cartan subalgebra. The vacua are thus character-

ized by 2(N − 1) real continuous parameters αa
i , 0 ≤ αa

i < 1. These αi
a are non-integrable

phases, which only arise in a topologically non-trivial space and cannot be gauged-away.

Their values must be dynamically determined at the quantum level: only at this level the

degeneracy among the infinity of classical vacua is removed [5].

The solution with αa
i = 0 is the trivial, SU(N) symmetric, one. For non-zero αa

i values,

the residual gauge symmetries are those associated with the generators that commute with

Vi. As V1 and V2 commute, the rank of SU(N) cannot be lowered [22] and thus the maximal

symmetry breaking pattern that can be achieved is

SU(N) −→ U(1)N−1. (2.24)

The spectrum of the 4D fields corresponding to the Cartan subalgebra is that of an ordinary

Kaluza-Klein (KK) tower,

M2
n1,n2

= 4π2

[
n2

1

l21
+

n2
2

l22

]
, n1, n2 ∈ Z , (2.25)

whereas for the rest of the fields, that is, fields corresponding to generators that do not

commute with all Vi, the spectrum is expected to be of the form

M2
n1,n2

= 4π2

[
(n1 +

∑N−1
a=1 qaαa

1/2 )2

l21
+

(n2 +
∑N−1

a=1 qaαa
2/2 )2

l22

]
, (2.26)
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where qa are the field charges, expressed in units of the charge of the fundamental repre-

sentation. These type of spectra are characteristic of Scherk-Schwarz symmetry breaking

scenarios [23, 25, 5, 24].

In the simplest case of SU(2), that will be of interest for us in the following sections,

the two Vi matrices may be chosen4 to be for instance V1 = eπiα1σ3 and V2 = eπiα2σ3 .

The mass spectrum for the fields A3
M coincides with the KK spectrum (2.25), whereas

for fields which do not belong to the Cartan subalgebra is is given by

M2
n1,n2

= 4π2

[
(n1 ± α1 )2

l21
+

(n2 ± α2 )2

l22

]
, (2.27)

as qa = 2 for fields in the adjoint representation. There are no massless modes in this

sector, for non-zero αi. The expected symmetry breaking pattern is thus

SU(2) −→ U(1) . (2.28)

2.2 Non-trivial ’t Hooft flux: m 6= 0

In this case, all solutions exhibit symmetry breaking, even at the classical level. The

embeddings of translations in gauge space do not commute, eq. (2.7), and the same holds

then for the constant matrices Vi [13, 26, 27]. In consequence, the symmetry breaking

pattern lowers the rank of the group [28].

Furthermore, the consistency condition in eq. (2.7), entails now the quantization of the

αi parameters defining Vi. Indeed, it is always possible to choose such Vi of the form [29, 30]:
{

V1 = P s1 Qt1

V2 = P s2 Qt2
, (2.29)

where P ≡ eiπ(N−1)/N diag(1, e2πi 1
N , . . . , e2πi N−1

N ), Qij ≡ eiπ(N−1)/N δij−1 , satisfying PN =

QN = eiπ(N−1) and P Q = e2πi/N QP . The parameters si, ti are integers that assume

values between 0 and N − 1 and that have to satisfy the consistency condition

s1 t2 − s2 t1 = m . (2.30)

Consider for instance the first choice in eq. (2.29). It follows that
{

V N
1 = eiπ(s1+t1)(N−1) 1

V N
2 = eiπ(s2+t2)(N−1) 1 ,

(2.31)

implying that the non-integrable phases in eq. (2.23) are not free parameters, but quan-

tized ones even at the classical level. Let’s define K1 = g.c.d. (m,N) and K2 =

g.c.d.(s1, s2, t1, t2, N). Using eq. (2.30), it is possible to prove that K2 ≤ K1 and that

K1/K2 ∈ Z. In terms of these two parameters, the residual symmetry group has dimension

(K1 K2 − 1), consistent with the following gauge symmetry breaking pattern [21]:

SU(N) → SU(K2)
K1
K2 × U(1)

K1
K2

−1
. (2.32)

4The direction a = 3 is only a possible choice; obviously the choice of gauge direction in the parametriza-

tion is arbitrary. It bears no relationship with the gauge direction chosen for the imposed background.
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For K1 = 1 (which implies K2 = 1), SU(N) is thus completely broken.

It can be shown that the mass spectrum is arranged along towers of fields [21] whose

masses can be expressed as

(Ma
n1,n2

)2 = 4π2

[
(n1 + βa

1/N)2

l21
+

(n2 + βa
2/N)2

l22

]
, (2.33)

with quantized parameters βa
i , as a consequence of eq. (2.31), βa

i = 0,. . . ,N − 1. Some

gauge fields can thus be massless: for K1 > 1, there are (K1K2 − 1) massless modes;

otherwise, if K1 = 1 both βa
i cannot be simultaneously zero and no massless modes remain.

In summary, these type of spectra are characteristic of constant discrete Scherk-Schwarz

boundary condition scenarios [32, 31]: they are alike to the Scherk-Schwarz patterns

obtained for m = 0, albeit with the parameters βi quantized.

As an illustration, let us particularize again to the SU(2) case. The only possible non-

zero value of m is then m = 1, for which a possible choice for the P and Q matrices is

P = iσ3 and Q = iσ1, with Vi given by

{
V1 = iσ3

V2 = iσ1
or

{
V1 = iσ1

V2 = iσ3
. (2.34)

As K1 = K2 = 1, eq. (2.32) entails that the expected symmetry breaking pattern is

SU(2) −→ ∅ ,

even at the classical level. Three towers of fields result, with masses given by

M2
n1,n2

=





4π2

[
(n1 + 1/2)2

l21
+

n2
2

l22

]

4π2

[
(n1 + 1/2)2

l21
+

(n2 + 1/2)2

l22

]

4π2

[
n2

1

l21
+

(n2 + 1/2)2

l22

]
.

(2.35)

These expressions allow no zero modes and thus the SU(2) gauge symmetry is indeed

completely broken.5

To conclude this section, we have seen that for SU(N) on a 2D torus, the y-dependent

boundary conditions are equivalent to constant Scherk-Schwarz boundary conditions (Vi).

For the case of trivial-’t Hooft flux, m = 0, the treatment shows them to be equivalent

to boundary conditions associated to continuous Wilson lines, while for m 6= 0 they are

equivalent to boundary conditions associated to discrete Wilson lines.

5With the particular choice in eq. (2.34) the three towers in eq. (2.35) would correspond to the gauge

directions a = 1, 2, 3, respectively.
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3. The effective Lagrangian theory

In the rest of the paper, we will analyze the pattern of symmetry breaking within a com-

pletely different approach: the identification of the minimum of the effective 4D potential,

after integrating the initial 6D Lagrangian -with a constant background field strength- over

the extra dimensions. To find and verify explicitly the form of the true vacuum, solving the

Nielsen-Olesen instability on the torus, we will obtain the 4D scalar potential and minimize

it. After some general considerations for SU(N), we will treat in full detail the SU(2) case

and compare the resulting spectra with those predicted in the previous section.

3.1 The 6-dimensional SU(N) Lagrangian

The Yang-Mills Lagrangian eq. (2.1) can be rewritten in terms of the imposed background

and its fluctuations as

LY M = −1

4
(Ga

MN + F a
MN )2 = L(0)

A + L(1)
A + L(2)

A + L(3)
A + L(4)

A , (3.1)

where the Lagrangian terms corresponding to i = 0, 1, 2, 3, 4 fluctuation fields are, explicitly,

L(0)
A = −1

4
Ga

MNGMN
a (3.2)

L(1)
A = −1

2
Ga

MN (DMAN a − DNAM a)] (3.3)

L(2)
A = −1

2
[DMAa

N DMAN a − DMAa
N DNAM a + gfabcGa

MNAM
b AN

c ] (3.4)

L(3)
A = −1

2
gfabc(DMAN a − DNAM a)Ab

MAc
N (3.5)

L(4)
A = −1

4
g2fabcfamnAb

MAc
NAM

m AN
n . (3.6)

The form of GMN was given in eq. (2.5), while

F a
MN = DMAa

N − DNAa
M + gfabcAb

MAc
N , (3.7)

with DM being the imposed-background covariant derivative,

DMAa
N ≡ ∂MAa

N − gfabcAb
NBc

M , (3.8)

satisfying

[DM ,DN ] = −i g GMN . (3.9)

Notice that classically L(1)
A = 0, as the imposed background satisfies the stationarity con-

dition given by the equations of motion, Da
MGMN = 0, although we will see below this it

is not a stable vacuum configuration.

A possible choice for the imposed background, compatible with constant GMN , is

Bi(y) = −ǫij
2π

g

(
k +

m

N

) yj

A λ̂ , (3.10)

– 11 –



J
H
E
P
0
1
(
2
0
0
7
)
0
0
5

where λ̂ denotes an arbitrary direction in gauge space, leading to

G12 =
4π(k + m

N )

gA λ̂ ≡ 2

g
H λ̂ . (3.11)

The quantity H so defined can be interpreted as a quantized abelian magnetic flux over

the torus surface (up to some factors):

1

A

∫

T 2

d2y (∂1B2 − ∂2B1) =
1

A

∫

T 2

d2y G12 =
2

g
H λ̂ . (3.12)

The above choice for Bi is consistent with the following embeddings of translations:

Ti(y) = e
ǫijπi(k+ m

N
)

yj
lj

λ̂
, (3.13)

which satisfy the conditions in eq. (2.7), when λ̂ is chosen as the SU(N) generator of the

Cartan subalgebra of the form λ̂ = diag(1, 1, . . . , 1 − N).

The boundary conditions for the fluctuation fields can be most conveniently expressed

choosing the bases in Poincaré space defined by z(z) ≡ (y1 ± iy2)/
√

2 and Aa
z(z) ≡ (Aa

1 ∓
iAa

2)/
√

2 and in gauge space by [λa, λ̂] = qaλa . In these bases,
{

Aa
M (y1 + l1, y2) = e

i π(k+ m
N

)
y2
l2

qa

Aa
M (y1, y2)

Aa
M (y1, y2 + l2) = e

−i π(k+ m
N

)
y1
l1

qa

Aa
M (y1, y2) ,

(3.14)

Da
z = ∂z −

H
2

z qa , Da
z̄ = ∂z +

H
2

z qa with [Da
z ,Da

z̄ ] = H qa . (3.15)

The non-commutativity of the imposed-background covariant derivatives, acting on charged

fields, illustrates that translations of arbitrary length along the two extra dimensions do

not commute. In order to determine the physical spectrum, all terms in the Lagrangian in

eqs.. (3.2)–(3.6) will have to be considered.

Total background

Were the Lagrangian formally expanded instead around an hypothetical total minimum

with background B̃M (y), eq. (2.15), and its fluctuations,6 the corresponding G̃MN would

vanish,

G̃MN =
i

g
[D̃M , D̃N ] = 0 , (3.16)

with D̃M given by

D̃MAa
N ≡ ∂MAa

N − gfabcAb
N B̃c

M . (3.17)

No tachyonic mass would be present then in the Lagrangian and, to extract the physical

spectrum, it would be enough to consider only terms with two fluctuation fields,

L̃(2)
A ≡ −1

2
[D̃MAa

N D̃MAN a − D̃MAa
N D̃NAM a] . (3.18)

Below we will explicitly explore the dynamical evolution of the system from the imposed

background BM (y) to the total stable one, B̃M (y), in the SU(2) case.

6Aa
M is used throughout the paper to generically denote excitations with respect to the background

included in any definition of the covariant derivative.
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3.2 The 6-dimensional SU(2) Lagrangian

We particularize now the discussion to a SU(2) gauge theory, with generators λa = σa/2,

where a = 1, 2, 3 and σa denote the Pauli matrices. The commutativity condition for the

embeddings of translations in gauge space, eq. (2.7), reduces now to the values ±1, as m

can take only two values, m = 0, 1, while k keeps being an arbitrary integer. A possible

choice for the imposed background is one pointing towards the third gauge direction, i.e.

λ̂ = σ3/2, whose replacement in eqs. (3.10), (3.14), defines the background and boundary

conditions for this case. The gauge indices for fields in the adjoint representation are

a = +,−, 3, with
{

λ+ = 1√
2
(λ1 + iλ2)

λ− = 1√
2
(λ1 − iλ2)

and

{
A+

M = 1√
2
(A1

M − iA2
M )

A−
M = 1√

2
(A1

M + iA2
M )

, (3.19)

where M = µ, z, z. For those fields, the charges with respect to the imposed background

are qa = +2,−2, 0, in units of the charge of the fundamental representation, qf = 1/2.

Consider the various components of the Yang-Mills Lagrangian, eqs. (3.2)–(3.6), for

the particular case of SU(2). Working in the basis of eq. (3.19), the Lagrangian without

gauge fixing terms can now be explicitly expanded as

L6D = Lµν + Lij + Lµ i , (3.20)

where

Lµν = −1

4
F a

µνFµν
a (3.21)

Lij = 2H
(
A−

z A+
z − A+

z A−
z

)
+

1

2

[
(∂zA

3
z)

2 + (∂zA
3
z)

2 − 2 (∂zA
3
z)(∂zA

3
z)

]
(3.22)

+
[
(DzA

+
z )(DzA

−
z ) + (DzA

+
z )(DzA

−
z ) − (DzA

+
z )(DzA

−
z ) − (DzA

+
z )(DzA

−
z )

]

−g2

[
1

2
(A+

z A−
z − A+

z A−
z )2 + A3

zA
3
z̄

(
A+

z A−
z + A−

z A+
z

)]

−g2
[
A3

zA
3
zA

+
z A−

z + h.c.
]
+ ig

(
A+

z A−
z − A+

z A−
z

) (
Dz̄A

3
z − DzA

3
z̄

)

+ig
[(

A3
zA

+
z − A3

z̄A
+
z

) (
Dz̄A

−
z − DzA

−
z

)
− h.c.

]
,

Lµi = g2(A+
µ Aµ

−(2A3
z̄A

3
z + A+

z A−
z + A+

z A−
z ) + A3

µAµ
3 (A+

z A−
z + A+

z A−
z ) (3.23)

−
[
A3

µAµ
+(A3

zA
−
z + A3

z̄A
−
z ) + h.c.

]
−

[
Aµ

+A+
µ A−

z A−
z + h.c.

]
)

+ig[(∂µA3
z − DzA

3
µ)(Aµ

−A+
z − Aµ

+A−
z ) + (∂µA+

z − DzA
+
µ )(Aµ

3A−
z − Az̄

3Aµ
−)

+(∂µA−
z − DzA

−
µ )(Aµ

+Az̄
3 − Aµ

3A+
z ) − h.c.]

+∂µA+
µ (DzA

−
z + Dz̄A

−
z ) + ∂µA−

µ (DzA
+
z + Dz̄A

+
z ) + ∂µA3

µ (DzA
3
z̄ + Dz̄A

3
z) .

From the 4D point of view, Lµν , Lij and Lµi will generate - after fixing the gauge - the pure

gauge Lagrangian, the scalar potential and the gauge invariant kinetic terms of the scalar

sector, respectively. Notice the term 2HA−
z A+

z in Lij : it corresponds to a negative mass

squared for the A+
z field, which pinpoints the instability of the theory expanded around a

false vacuum.

– 13 –



J
H
E
P
0
1
(
2
0
0
7
)
0
0
5

Gauge fixing Lagrangian: the R6D
ξ gauge

The structure of the Lµi term suggests immediately a certain gauge choice compatible

with the boundary conditions, that we will call the R6D
ξ gauge. Among all terms in the 6D

Lagrangian containing two fluctuation fields, i.e. L(2)
A , the only 4D derivative interaction

of the Aµ is of the form

−Aµ
a∂µ (DzA

a
z + DzA

a
z) , (3.24)

and it appears in the last row of Lµi. These terms are cancelled by the following choice for

the gauge-fixing Lagrangian

Lg.f.
6ξ = − 1

2 ξ

∑

a

[∂µAµ
a − ξ (DzA

a
z̄ + Dz̄A

a
z)]

2 . (3.25)

A warning is pertinent here. Not all terms which lead to 4D mixed terms (bilinears

involving 4D derivatives of gauge fields and scalar fields) will be eliminated through this

gauge choice. Additional 4D mixed terms may result from the cubic couplings appearing

in the third and fourth rows of Lµi, if some 4D scalars take vacuum expectation values due

to the instability of the present expansion of the Lagrangian. In other words, the naive

R6D
ξ gauge defined above does not match a proper 4D Rξ gauge. We will come back to

this point later on, in subsection 3.4.

3.3 The effective 4-dimensional SU(2) Lagrangian

The 4D Lagrangian,

L4D =

∫

T2

d2yL(x, y) , (3.26)

will describe the physics of 4D fields, A
a (r)
M (x), defined from

Aa
M (x, y) ≡

∑

r

A
a (r)
M (x)fa(r)(y) , (3.27)

with the extra-dimensional wave functions fa(r) satisfying the boundary conditions

{
fa(r)(y1 + l1, y2) = e

iπ(k+ m
N

)
y2
l2

qa

fa(r)(y1, y2) ,

fa(r)(y1, y2 + l2) = e
−iπ(k+ m

N
)

y1
l1

qa

fa(r)(y1, y2) ,
(3.28)

and r referring to the infinite towers of 4D modes. Depending on their gauge charge, fields

are neutral (a = 3) or charged (a = ±) with respect to the imposed background, and may

be arranged in 4D KK towers (r = n1, n2) for the former and Landau levels (r = j) for the

latter.

The shape of the extra-dimensional wave functions depends exclusively on the bound-

ary conditions, encoded in the covariant derivative. That is, the wave functions depend on

the gauge index (whether neutral or charged with respect to the background), but do not

depend on its Lorentz index (whether 4D vectors or scalars).
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Neutral fields

For neutral fields, the covariant derivatives Di reduce to ordinary (commuting) derivatives.

For the 4D vectors A
3 (n1,n2)
µ (x), the following masses result

(∂z∂z + ∂z∂z)f
3 (n1,n2)(y) = m2

3 (n1,n2)
f3 (n1,n2)(y) , (3.29)

where

m2
3 (n1,n2)

≡ 4π2

(
n2

1

l21
+

n2
2

l22

)
, (3.30)

while the eigenfunctions are given by

f3(n1,n2)(y) =
1√
A

e
2πi

“

n1
y1
l1

+n2
y2
l2

”

. (3.31)

The mode A
3 (0,0)
µ (x) remains massless at this level, as it would for a residual U(1) symmetry.

For neutral scalar fields, the quadratic mass terms in the R6D
ξ gauge, eqs. (3.22)

and (3.25), lead to the following 4D Lagrangian after integration over the extra dimensions,

(
L4D

ij

)neutral

2
= −1

2

∞∑

n1,n2=−∞
m2

3 (n1,n2)

{
A(−n1,−n2)(x)A(n1,n2)(x)+ξa(−n1,−n2)(x)a(n1,n2)(x)

}
,

where A(n1,n2)(x) and a(n1,n2)(x) are the mass eigenstates,

a(n1,n2)(x) ≡ −i√
2

(
eiθ(n1,n2)A3 (n1,n2)

z (x) + e−iθ(n1,n2)A
3 (−n1,−n2)
z (x)

)
, (3.32)

A(n1,n2)(x) ≡ 1√
2

(
e−iθ(n1,n2)A

3 (−n1,−n2)
z̄ (x) − eiθ(n1,n2)A3 (n1,n2)

z (x)
)

, (3.33)

with eiθ(n1,n2) ≡ 2π
m3(n1,n2)

(
n1
l1

+ in2
l2

)
.

In the absence of instability, A(n1,n2)(x) would be the physical neutral scalar fields,

while a(n1,n2)(x) would play the role of pseudo-Goldstone bosons, eaten by the A
3 (n1,n2)
µ (x)

to acquire mass. Notice that indeed the quantity DzA
3
z̄ + Dz̄A

3
z appearing in the gauge

fixing condition, eq. (3.25), can be expressed in terms of the scalars a(n1,n2) alone:

DzA
3
z̄ + Dz̄A

3
z = −

∞∑

n1,n2=−∞
m3(n1,n2) a(n1,n2)(x) f (n1,n2)(y) . (3.34)

Notice as well that it does not exist a pseudo-Goldstone boson with n1 = n2 = 0, which

is consistent with the fact that A
3 (0,0)
µ has not received, at this level, a contribution to its

mass.

Charged fields

To determine the Landau energy levels, define as usual creation and destruction operators

a and a†, for charges q± = ±2,

a+ ≡ − i√
2H D

(+)
z , a− ≡ i√

2H D
(−)
z ,

a†+ ≡ − i√
2H D

(+)
z , a†− ≡ i√

2H D
(−)
z ,

(3.35)
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which satisfy commutation relations
[
a±, a†±

]
= 1 . (3.36)

Defining as well the number operator ĵ(±) = a†(±)a(±), it results that charged fields A
± (j)
M (x)

get at least partial contributions to their masses from the term

−(Da
zDa

z̄ + Da
z̄Da

z ) fa(j)(y) = m2
a (j) fa(j)(y) , (3.37)

with a = ± and mass eigenvalues given by

m2
± (j) ≡ 2H(2j + 1) =

4π(k + m
2 )

A (2j + 1) , (3.38)

where j integer ≥ 0.

That is, for charged fields the commutator in eq. (3.9) does not vanish and in con-

sequence no zero eigenvalues are expected. In other words, while neutral fields can be

simultaneously at rest with respect to the two extra dimensions, charged fields cannot, as

a charged particle in a magnetic field moves. The energy levels are Landau levels. Notice

as well that the mass scale is set by the torus area, the ’t Hooft non-abelian flux m and

the integer k, while it is independent of the 6D coupling constant g.

The associated extra-dimensional wave functions,

f+(j,ρ)
(x, y) =

(
2 d

l31l2

) 1
4 (−i)j√

2j j!
e
iπ d

y1y2
l1 l2 × (3.39)

×
∞∑

n=−∞
e
− πd

l1l2
(y2+nl2+

ρl2
d

)2
e
2πi(d n+ρ)

y1
l1 Hj,ρ

[√
2πd

l1 l2

(
y2 + nl2 +

ρl2
d

)]

are derived explicitly in appendix A.

The opposite-charge field is f−(j,ρ)
(x, y) =

(
f+(j,ρ)

(x, y)
)∗

. Obviously, f+(j,ρ)
and f−(j,ρ)

satisfy the boundary conditions in eq. (3.28).

The quantity d in eq. (3.39) is defined by

d ≡ q (k +
m

N
) , (3.40)

and signals degeneracy. Notice the index ρ: generically, the tower of Landau levels may

be defined by another quantum number [33] in addition to j. ρ sweeps over these extra

degrees of freedom,

0 ≤ ρ ≤ d − 1 , (3.41)

and its possible values signal degenerate energy levels, as the latter are independent of ρ,

see eq. (3.38) above. For a field of given charge q (i.e, q = 2 and q = 1 for fields in the

adjoint and fundamental representation of SU(2), respectively), the degree of degeneracy

is given by d. As discussed in appendix A, d is necessarily an integer, which for SU(2)

reduces to either d = qk or d = q(k + 1
2), depending on the value of m.
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While 4D charged vectors A
±(j,ρ)
µ get only mass contributions from eq. (3.38) above,

charged scalars receive further contributions from quadratic terms in eq. (3.22). Working

in the R6D
ξ gauge, eq. (3.25), and, after diagonalizing the system, we obtain

(
L4D

ij

)charged

2
=

d−1∑

ρ=0

{
2HH∗

0,ρ(x)H0,ρ(x) − 2H
∞∑

j=1

(2j + 1)H∗
j,ρ(x)Hj,ρ(x)

−ξ 2H
∞∑

j=0

(2j + 1)h∗
j,ρ(x)hj,ρ(x)

}
. (3.42)

This Lagrangian has been written in terms of the following mass eigenfunctions:

H0,ρ(x) = −A
− (0,ρ)
z (x) ,

h0,ρ(x) = A
− (1,ρ)
z (x) ,

Hj,ρ(x) = −sjA
− (j+1,ρ)
z (x) + cjA

− (j−1,ρ)
z (x) ,

hj,ρ(x) = cjA
− (j+1,ρ)
z (x) + sjA

− (j−1,ρ)
z (x) , (3.43)

where cj ≡ cos θj =
√

j+1
2j+1 and sj ≡ sin θj =

√
j

2j+1 , with j ≥ 1. H0,ρ(x) denotes the

4D field (or fields, when ρ takes several values) with negative mass(es) −2H and h0,ρ(x)

its unphysical scalar partner(s), eaten -at this level- by the A
+ (0,ρ)
µ (x) field(s) to become

massive.7

In the absence of the instability induced by the negative mass, Hj,ρ(x) would be the

physical charged scalar fields, while hj,ρ(x) would play the role of pseudo-Goldstone bosons,

eaten by the A
+(j,ρ)
µ (x) fields to acquire mass. Indeed, the gauge fixing condition can be

expanded as

DzA
−
z + Dz̄A

−
z = i

d−1∑

ρ=0

∞∑

j=1

m±j hj,ρ(x) f−(j,ρ)(y) . (3.44)

Notice as well that this result holds for any value of j, including j = 0, since Aµ
± (0,ρ)(x) has

taken a contribution to its mass after compactification, as a consequence of its interaction

with the imposed background.

The Lagrangian exhibits thus a behavior that could correspond to the breaking

SU(2) → U(1), although the presence of the tachyon H0,ρ(x) signals that the true vac-

uum remains to be found. The remaining analysis can be technically simplified working in

the R6D
ξ gauge with ξ = ∞: the would-be goldstone fields a(x) and h(x) disappear then

from the analysis, and results will be given for this case. However, before proceeding to it,

let us briefly discuss another gauge-fixing choice, alternative to that used above.

3.4 The R4D
ξ gauge

An appropriate gauge choice, also compatible with the boundary conditions, is

Lg.f.
4ξ = − 1

2 ξ

∑

a

[
∂µAµ

a − ξ
(
D̃zA

a
z̄ + D̃z̄A

a
z

)]2
, (3.45)

7The tachyon H0,ρ could also be correctly denoted H−1,ρ, as a j = −1 state, extending the definition

given for the Hj,ρ fields. We have refrained from doing so, though, with the aim of beautifying the notation.
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where now D̃i is the total covariant derivative defined in eq. (3.17), corresponding to a

stable background. Notice the analogy with the analysis in the previous subsections in

terms of the R6D
ξ gauge, eq. (3.25). The choice in eq. (3.45) guarantees the elimination

of all 4D scalar-gauge crossed terms stemming from the last three rows of Lµi, eq. (3.23),

including those resulting after spontaneous symmetry breaking. It is then a true Rξ gauge

from the four-dimensional point of view.

In this gauge, it is trivial to formally identify the terms in the 6D Lagrangian which

will give rise to the masses of the different type of 4D fields: gauge bosons and their replica,

physical scalars and “would be” goldstone bosons:

1. Gauge boson masses will result from

Lgauge
mass = −1

2
Aa

µ

[
D̃z D̃z̄ + D̃z̄ D̃z

]
ab

Aµ b , (3.46)

where a, b are the indices in the adjoint representation.

2. Physical, ξ-independent, scalar masses will stem from

Lscal
mass = −1

2

(
D̃zA

a
z̄ − D̃z̄A

a
z

)2

= −1

2
(Aa

z , Aa
z̄)

(
−D̃z̄D̃z̄ D̃z̄D̃z

D̃zD̃z̄ −D̃zD̃z

)

ab

(
Ab

z

Ab
z̄

)
. (3.47)

Because [D̃z, D̃z̄ ] = 0 (see eq. (3.16)), the eigenvalues of this matricial equation

produce the following mass contributions to scalar fields:

∆M2
physical = 1

2

[
D̃zD̃z̄ + D̃z̄D̃z

]
,

∆M2
goldstone = 0 .

(3.48)

Comparison with eq. (3.46) shows that it is generically expected to find a scalar

partner for each 4D gauge boson, degenerate in mass.

3. Finally, the ξ-dependent scalar masses will result from,

Lξ
mass = −ξ

2

(
D̃zA

a
z̄ + D̃z̄A

a
z

)2

=
1

2
(Aa

z , Aa
z̄)

(
D̃z̄D̃z̄ D̃z̄D̃z

D̃zD̃z̄ D̃zD̃z

)

ab

(
Ab

z

Ab
z̄

)
. (3.49)

Once again, because D̃z and D̃z̄ commute, the eigenvalues of Lξ
mass will result in

mass contributions

∆M2
goldstone =

ξ

2

[
D̃zD̃z̄ + D̃z̄D̃z

]
,

∆M2
physical = 0 . (3.50)
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The coincidence between the eigenvalues expected for the gauge and “would be” gold-

stone boson masses is a characteristic of hidden non-abelian symmetries. The larger de-

generacy among the three sectors -gauge, physical scalars and unphysical scalars- is related

to the fact that total field strength of the stable vacuum is zero. In consequence the coor-

dinate dependent conditions are equivalent to constant ones, as shown in section 2, which

discriminate among gauge charges, not among Lorentz indices.

In the next section, we will follow the dynamical evolution of the system towards a

stable vacuum, determining the minimum of the 4D potential and obtaining the physical

spectra in both the R4D
ξ and R6D

ξ gauges.

4. The minimum of the 4-dimensional potential

Below, we will obtain the effective 4D potential for SU(2), minimize it and find the

physical spectra. The results will be compared with the theoretical expectations developed

in section 2.

We have first integrated the 6D Lagrangian, eqs. (3.21)–(3.23), plus the gauge-fixing

term, eq. (3.25) or eq. (3.45), over the 2D torus surface, obtaining in this way all effective

4D couplings among the towers of states. In ordinary compactifications, i.e. without back-

ground with constant field strength, a good understanding of the 4D light spectrum only

requires to consider the lightest KK states and their self-interactions. With the inclusion

of such background, this is no more the case due to the simultaneous presence of KK and

Landau levels. Cubic and quartic terms link a given neutral (KK) field to an infinity of

charged (Landau) levels, and viceversa. Previous analysis of scenarios with background

with constant field strength, such as the original Nielsen and Olesen one [14], as well as

subsequent studies [17], have typically included only quartic interactions of the lowest 4D

charged level (i.e. the tachyon), with at most the addition of the tower of only one type of

replica. However, we will show that it is necessary to consider many modes and all types

of interaction between KK and Landau levels, for a true understanding of the system.

For quadratic terms, the integration over the torus reduces to the use of the orthogo-

nality relations for the bases of extra-dimensional wave functions. The inclusion of cubic

and quartic interactions requires the evaluation of integrals with three and four extra-

dimensional wave functions. We have solved them analytically in the general case. The

results can be found in appendix B, together with the completeness relationships linking

them. The latter have been checked as well numerically up to a precision better than 10−6.

We have then proceeded to look for the minima of the potential. Let us previously

recall the theoretical expectations. As the true vacuum should have total zero energy, see

eq. (2.17), the stable minimum of the SU(2) 4D potential should correspond to a dynamical

reaction of the system of the form

F 3
12(x, y)|min = −G3

12 =
2H
g

=
4π

gA(k +
m

2
) , (4.1)

so as to cancel the contribution of the imposed background. That is, the following value
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for the minimum of the 4D potential is expected (see eq. (2.16)):

V |min =
1

2

∫

T 2

dy [(F 3
12(x, y))2 + 2G3

12 F 3
12(x, y)] |min = − 8π2

g2A (k +
m

2
)2 . (4.2)

We analyze below whether the minimum of our 4D effective potential does converge towards

such values. Three comments on the procedure are pertinent:

1. The determination of the set of vacuum expectation values that minimizes the po-

tential can only be done numerically. Starting with the inclusion of only the lightest

fields of the KK and Landau towers, heavier replicas of both types will be successively

added and the corresponding minimum determined at each step. The total number

of neutral and charged replica to be included in the analysis is determined requiring

that the minimum of the potential reaches an asymptotically stable regime.

2. For technical and theoretical reasons, we will present our results in the two gauges

previously described: the R6D
ξ gauge, for the particular case ξ = ∞, and the general

R4D
ξ gauge. This will allow precise checks of the gauge invariance of the results.

3. In order to keep as low as possible the degeneracy of states, while analyzing the two

possible non-trivial setups, the numerical results will be confined to two cases: a)

m = 0 , k = 1 and b) m = 1 , k = 0. Furthermore, all numerical results presented

below correspond to an isotropic torus,8 l1 = l2.

4.1 Non-trivial ’t Hooft flux: m = 1, k = 0

This case corresponds to a non-trivial ’t Hooft flux, in which the generators of the trans-

lation operators Ti anti-commute. The fields in the Landau towers are not degenerate, as

d = 1 in eq. (3.40): the index ρ become thus meaningless and it will be obviated all through

this Subsection.

Let us illustrate with a simple argument how the system dynamically approaches the

true vacuum and the need of including rather high neutral and charged modes. Consider for

the moment only the charged scalar zero mode, H0 (i.e. the tachyon), the lightest neutral

scalar A
3 (0,0)
z and their interactions. The effective 4D potential is then simply given by:

V = −2H |H0(x)|2 +
g2

2
I
(4)
0 |H0(x)|4 + |H0(x)|2 A3 (0,0)

z (x)A
3 (0,0)
z̄ (x) , (4.3)

with I
(4)
0 referring to the 4-point integral between the lightest charged states.9 One can

immediately recognize in eq. (4.3) the classical mexican-hat potential, with its minimum

corresponding to:

< |H0(x)|2 > =
2H

g2I
(4)
0

, < A3 (0,0)
z (x) >=< A

3 (0,0)
z̄ (x) > = 0 . (4.4)

8The anisotropic case will be considered in a future work.
9The general definition of the 3-point and 4-point integrals is given in appendix B. Here I

(4)
0 is an

abbreviated notation for the integral I
(4)
C [0, 0, 0, 0, 0, 0, 0, 0] defined there.
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Figure 1: Values of the minimum of the scalar potential as heavier degrees of freedom are included.

Triangles (stars) represent the numerical results obtained in the R6D
ξ=∞

(R4D
ξ ) gauge. The horizontal

dashed line represents the theoretically predicted value for the potential minimum, in the non-trivial

’t Hooft flux case.

In this simplified example, only the charged scalar (i.e.the tachyon) acquires a non vanish-

ing vacuum expectation value (vev) while the neutral fields remain unshifted. Using the

numerical value 1/I
(4)
0 = (0.85A), it results:10

Vmin = − 2H2

g2I
(4)
0

∼ −0.85 × 2π2

g2A , (4.5)

which is still quite different from that predicted by eq. (4.2). Moreover, it is enough to add

the interactions with either the next neutral or charged levels to observe the appearance of

tadpole terms. That is, the true minimum of the system does not correspond then anymore

to the vevs obtained in eq. (4.4), but all fields get new shifts instead.

We found that generically all charged and neutral fields in the two towers get vevs.

Figure (1) shows the dynamical approach to the true minimum by the successive addition

of heavier charged modes (labelled by j = 0, . . . , 7 in the horizontal axis) and heavier

neutral modes (labelled with n1 = n2 = 0, . . . , 3), for both the R4D
ξ and R6D

ξ=∞ gauges.

For example, the point labelled with n1 = n2 = 1 and j = 3 represents the numerical

calculation where all degrees of freedom up to n1 = n2 = 1 and j = 3 are included. The

graphic shows that the value of the minimum of the scalar potential does converge to the

theoretically predicted value of −2π2/(g2A): for n1 = n2 ≥ 1 (≥ 5 neutral complex fields)

10The dimensions of the quantities in eq. (4.4) are [H] = [I
(4)
0 ] = [E2] and [g] = [E−1].
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Figure 2: Lightest gauge mode mass. Triangles (stars) represent the numerical results obtained

in the R6D
ξ=∞

(R4D
ξ ) gauge. The horizontal dashed line represents the theoretically predicted value

in the non-trivial ’t Hooft flux case.

and j ≥ 3 (≥ 4 charged complex fields) a precision over 1% is achieved, in both gauges; for

n1 = n2 = 3 and j = 7, it reaches 10−5 (10−7) for the R6D
ξ=∞ (R4D

ξ ) gauge.

As regards the symmetries of the spectrum, the numerical results confirm that the

SU(2) symmetry is completely broken. This is well illustrated by figure 2, where the

lightest vector state is shown to be asymptotically massive. The horizontal dashed line

represents the mass value of 0.25 (in units of 4π2/A), theoretically predicted in eq. (2.35).

An excellent agreement is observed as well between the calculations in the two gauges after

the levels up to n1 = n2 ≥ 1 and j ≥ 3 are included. We have thus explicitly proved that

the SU(2) symmetry is completely broken.

In figure 3 the full spectrum of the 4D vector fields is displayed, with all fields up to

n1 = n2 = 3 and j = 7 included in the estimation, in the R4D
ξ and R6D

ξ=∞ gauges. No

visible difference can be noticed. This result is a strong numerical proof of the consistency

of our effective 4D Lagrangian, and its manifest gauge invariance when a sufficient number

of heavy degrees of freedom are included.

Finally, figure 4 retakes the full spectrum, resulting from the diagonalization of the

complete system, in the R4D
ξ gauge: gauge bosons (stars), physical scalars (empty triangles)

and unphysical scalars (full triangles), with the latter corresponding to the choice ξ = 0.

Superimposed, the figure shows as well (black dots joined by a full line) the theoretical

prediction for constant discrete Scherk-Schwarz boundary conditions, eq. (2.35). Notice

that:
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Figure 3: Gauge invariance of the gauge spectrum for the non-trivial ’t Hooft flux case. Triangles

(stars) represent the numerical results obtained in the R6D
ξ=∞

(R4D
ξ ) gauge respectively, for n1 =

n2 = 3 and j = 7.

• Each 4D vector boson has a physical scalar partner degenerate in mass, as expected

in the asymptotic limit from eqs. (3.46) and (3.48).

• The unphysical scalar spectrum -which constitutes half of the scalar spectrum- is

identified as those fields which appear to have zero mass, as expected for “pseudo-

goldstone bosons” eaten by the vector fields to acquire masses.11 A slight numerical

mismatch only appears for the masses of the pseudo-goldstone fields of the heavier

modes, as the numerical truncation of the tower of states starts to be felt

• The coincidence between the numerical results -obtained with y-dependent boundary

conditions- and the spectrum predicted for constant discrete Scherk-Schwarz bound-

ary conditions (black dots) is very good up to the first 20 modes (i.e. around M2 ≈ 3

in the units chosen for illustration). The agreement of the overall scale, as well as

the expected four-fold degeneracy of the first two massive levels and the eight-fold

degeneracy of the next one, are clearly seen. Only the higher levels start to show

disagreement with the theoretical formulas. This is as it should be, as the present

numerical analysis was restricted to charged levels up to j = 7 and neutral ones up

to n1 = n2 = 3. Indeed, the next mode non-included in the numerical analysis would

11As stated, this numerical spectrum has been computed for ξ = 0, but it can also be viewed as corre-

sponding to the ξ-independent contributions to the goldstone masses for any ξ, as it follows from eq. (3.48).
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Figure 4: Full spectrum for the non-trivial ’t Hooft flux case, in the R4D
ξ=0

-gauge. Gauge bosons

(stars), physical scalars (empty triangles) and unphysical scalars (full triangles) are shown. The

minimization procedure includes all charged and neutral modes up to n1 = n2 = 3 and j = 7. Black

dots joined by a full line represent the theoretically predicted masses derived in section 2.2.

be j = 8, which has a squared mass M2 ≈ 2.7. In consequence, the numerical results

and the theoretical prediction start to diverge around this scale. The mode j = 8

sets the limit of validity of the present numerical analysis, while a better agreement

can be reached including higher modes.

We have also computed the physical spectrum in the R4D
ξ gauge by another procedure:

the direct substitution of the vevs obtained from the numerical minimization into the total

covariant derivatives in eqs. (3.46) and (3.48). The coincidence with the numerical results

shown above is so precise that it would be indistinguishable within the drawing precision.

4.2 Trivial ’t Hooft flux: m = 0, k = 1

Consider now the case of trivial ’t Hooft flux, in which the generators of the translation

operators Ti commute. The simplest non-trivial configuration of this type12 corresponds

to m = 0 and k = 1. A two-fold degeneracy of the charged (Landau) levels is then present,

as d = 2 in eq. (3.40) and ρ = 0, 1. In consequence, due to the higher number of states,

the numerical treatment is more cumbersome than in the previous Subsection.

The dynamical approach to the minimum of the 4D potential can be seen in figure 5.

Again it shows how the asymptotic regime is reached with the successive addition of heavier

charged and neutral fields. The dashed horizontal line represents the theoretical predicted

12That is, with lowest degeneracy.
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Figure 5: Values of the minimum of the scalar potential as heavier degrees of freedom are included.

Triangles (stars) represent the numerical results obtained in the R6D
ξ=∞

(R4D
ξ ) gauge. The horizontal

dashed line represents the theoretically predicted value for the potential minimum, in the trivial ’t

Hooft flux case.

value, −8π2/g2A, as expected from eq. (4.2): for n1 = n2 ≥ 1 (≥ 5 neutral fields) and

j ≥ 3 (≥ 4 charged fields) a precision over 1% is achieved, both in the R6D
ξ=∞ gauge and in

the R4D
ξ gauge. In the best case that we could numerically evaluate for the R6D

ξ=∞ gauge

(n1 = n2 = 3, j = 7), a precision of O(10−5) has been obtained.

As regards the expected spectra, recall from Subsection 2.1 that all possible solutions

should correspond to either unbroken SU(2) symmetry or a SU(2) → U(1) breaking pat-

terns, all of them being degenerate in the absence of quantum corrections and fermions.

All numerical results obtained here turn out to correspond to SU(2) → U(1) breaking ex-

amples. This is well illustrated by figure 6 where the mass of one (and only one) vector

state is seen to vanish asymptotically, in agreement with the lightest value predicted in

eq. (2.25) for αi 6= 0. That state is the 4D gauge vector boson of the unbroken U(1)

symmetry. The figure also shows clearly that if only the first few light levels of the KK

and Landau towers would have been considered in the analysis, the lightest state would

have looked massive, suggesting a fake SU(2) → ∅ breaking pattern. Only the inclusion

of higher charged and neutral levels allows to attain the asymptotic regime, unveiling then

the remaining U(1) symmetry. Numerically, the agreement with the theoretical prediction

starts to be satisfactory for n1 = n2 ≥ 1 and j ≥ 3, analogously to the case with non-trivial

’t Hooft flux in the previous Subsection.

It is worth pointing out that the U(1) symmetry of the total stable vacuum selects,
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Figure 6: Lightest gauge mode mass. Triangles (stars) represent the numerical results obtained

in the R6D
ξ=∞

(R4D
ξ ) gauge. The horizontal dashed line represents the theoretically predicted value

in the trivial ’t Hooft flux case.

in general, a different gauge direction, in SU(2) space, than that of the imposed abelian

background. In other words, it may be a different U(1) symmetry than that naively exhib-

ited by the Lagrangian, when expanded around the imposed background. The neutral and

charged towers of fields, as defined by the latter, have recombined dynamically, to select

the final stable symmetric direction.

Figure 7 shows two gauge spectra obtained numerically including all modes up to

n1 = n2 = 2 and j = 7, for the two gauges R6D
ξ=∞ (triangles) and R4D

ξ (stars). Notice

the difference with the analogous figure obtained for the m = 1 case, figure 3: at first

sight, one could think that the test of gauge invariance fails in the present case. This is

not the case, though: the two spectra turn out to correspond to different values for the

set of arbitrary parameters α1, α2, in eq. (2.27), which parametrize the possible Scherk-

Schwarz spectra. We determined the values chosen by the minimization algorithm in these

examples, performing a two-parameter fit to the first 20 masses obtained from the numerical

procedure. The χ2 value of the fit is extremely significant for both gauges. It resulted in

the values α1 = α2 = 1/2 for the example shown in the R6D
ξ=∞ gauge, as can be easily

deduced from the observed boson multiplicity. Conversely, for the R4D
ξ gauge calculation,

the minimization algorithm selected α1 = 0.334 and α2 = 0.219, to which it corresponds the

observed lower multiplicity of degenerate fields. Examples corresponding to other values

have also been obtained, although not illustrated here. The existence of different spectra

for the same symmetry breaking pattern is generic of Scherk-Schwarz compactification at
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Figure 7: Gauge boson spectra for the trivial ’t Hooft flux case. Triangles (stars) represent the

numerical results obtained in the R6D
ξ=∞

(R4D
ξ ) gauge respectively, for n1 = n2 = 2 and j = 7. In

this example, the two spectra turn out to correspond to different sets of (α1, α2) values: (1/2, 1/2)

(triangles) and (0.33, 0.22) (stars).

the classical level.

In figure 8 we retake the gauge (stars), physical scalar (empty triangles) and unphysical

scalar ( full triangles) spectra, in the R4D
ξ gauge, for the same αi values than in the previous

figure, and with the unphysical scalar masses computed for ξ = 0. Due to the degeneracy

of the Landau levels, the numerical analysis could only be performed including modes up

to n1 = n2 = 2 and j = 7. The masses of the unphysical scalar degrees of freedom tend, as

before, to vanish -as they should- as the asymptotic regime is approached. For the heavier

modes, a slight numerical mismatch appears between the masses of the vector fields and

those of their physical scalar partners. A corresponding tiny mass for the unphysical scalar

partners is also observed. This discrepancy is again consequence of the truncation error.

Apart form this subtlety, physical scalar and gauge masses are in excellent agreement.

Moreover, the agreement between the numerical spectra and the theoretically predicted

one - typical of Scherk-Schwarz breaking and represented in figure 8 with black dots joined

by a full line - is very good up to the first 40 modes (i.e.around M2 ≈ 4 in the units

chosen). This scale sets the validity limit for the present numerical analysis of our low-

energy effective 4D theory. A better agreement above this scale could be obtained adding

higher modes. Once again, the mass of the next non-included mode, the j = 8 mode, is

M2 ≈ 5.4 and coincides with the scale at which the numerical masses and the theoretical

predicted ones start to diverge.
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Figure 8: Numerical results for the trivial ’t Hooft flux case, in the R4D
ξ -gauge. Gauge bosons

(stars), physical scalars (empty triangles) and unphysical scalars (stars) are shown. The minimiza-

tion procedure includes all the charged and neutral modes up to n1 = n2 = 2 and j = 7. Black

dots joined by a full line represent the theoretically predicted masses derived in section 2.1, for the

case α1 = 0.33, α2 = 0.22.

Finally, we have also computed the physical spectrum in the R4D
ξ gauge by another

procedure: the direct substitution of the vevs obtained from the numerical minimization

into the total covariant derivatives in eqs. (3.46) and (3.48). The coincidence with the

numerical results shown above is so precise that it would be indistinguishable within the

drawing precision.

In summary, in this section we have thus explicitly shown, for the 6D SU(2) gauge

group compactified on a 2D torus, that a stable vacuum of zero energy is reached, out of the

initial unstable configuration. To solve the system with y-dependent boundary conditions

has been shown to be tantamount to solve it with constant boundary conditions. For the

case of non-trivial ’t Hooft flux, the pattern of symmetry breaking obtained is SU(2) −→ ∅

and it corresponds to Scherk-Schwarz symmetry breaking with discrete Wilson lines. For

trivial ’t Hooft flux, the patterns found correspond to SU(2) −→ U(1) and are equivalent

to Scherk-Schwarz symmetry breaking with continuous Wilson lines.

5. Conclusions and outlook

Boundary conditions depending upon the extra coordinates are equivalent to constant ones,

for SU(N) on a two-dimensional torus. For trivial ’t Hooft flux, they are equivalent to

constant Scherk-Schwarz boundary conditions, associated to continuous Wilson lines. For
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the case of non-trivial ’t Hooft flux, the coordinate-dependent boundary conditions can

be traded instead by constant Scherk-Schwarz boundary conditions, associated to discrete

Wilson lines, resulting always in symmetry breaking. One of the novel features of this

work is the study of the phenomenological implications of this last scenario, studying the

pattern of gauge symmetry breaking and the spectrum of the four-dimensional vector and

scalar excitations.

Chirality cannot be implemented within a SU(N) background and will require to

consider in the future non-simply connected groups. For them, the equivalence between

coordinate-dependent and constant boundary conditions does not hold in general. A field-

theory treatment of the system subject to coordinate dependent boundary conditions is

then necessary to solve the details of the four-dimensional spectrum. We start this ap-

proach in the present work by treating also explicitly the case of SU(2) on a torus with

background.

We have explicitally solved the Nielsen-Olesen instability on the two dimensional torus.

For the obtention of the four-dimensional effective Lagrangian, all couplings have been

taken into account, including all quartic and cubic terms mixing Kaluza-Klein and Landau

levels. Those terms are shown to be essential in the determination of the stable minimum of

the potential and its symmetries. The corresponding integrals over the extra-dimensional

space have been obtained analytically for all modes, for the first time. Furthermore, we

have defined gauge-fixing Lagrangians, appropiate when both Kaluza-Klein and Landau

levels are simultaneously present and interacting. We found that the naive Rξ gauge

defined in six dimensions is then not equivalent to the Rξ gauge in four dimensions. The

computations have been performed in different possible gauge choices and the issue has

been clarified in depth. These technical tools will be necessary when groups other than

SU(N) will be considered.

The system is seen to evolve dynamically from the unstable background configuration

towards a stable and non-trivial background of zero energy. This happens through an

infinite chain of vacuum expectation values of the four-dimensional scalar fields. The

resulting spectra do show explicitly the symmetries expected from the theoretical analysis

mentioned above, for the case of SU(N) with constant boundary conditions.

It turns out that for each four-dimensional gauge boson there exists a scalar partner

degenerate in mass, both for trivial and non-trivial ‘t Hooft fluxes. This is one of the

important phenomenological drawbacks that the approach has to face. The scenario has

to be enlarged then, for instance including more than just one scale in the theory. Indeed,

a motivation for the present work was the hypothetical identification of the Higgs field

as a component of a gauge boson in full space, which would make its mass insensitive

to ultraviolet contributions, unlike in the Standard Model. To find a realistic pattern of

electroweak symmetry breaking, which matches the spectra found in nature, remains a

non-trivial issue.
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A. Landau levels

In this appendix we derive the wave functions for the Landau levels on a 2D torus [34],

with charge q > 0, defined as the solutions of the eigenvalue problem

a†+a+ f+(j)(y) = j f+(j)(y) , (A.1)

where a†+ and a+ are given in eq. (3.35). They obey the boundary conditions

f+(j)(y + l1) = e
iπd

y2
l2 f+(j)(y) , (A.2)

f+(j)(y + l2) = e
−iπd

y1
l1 f+(j)(y) , (A.3)

where d = q
(
k + m

N

)
. It is easy to compute first the zero mode, satisfying

a+ f+(j=0)(y) = 0 (A.4)

and, subsequently, obtain all the heavier solutions by recursively applying the creation

operator a†:

f+(j+1)(y) =

√
1

j + 1
a†+ f+(j)(y) . (A.5)

A possible ansatz for the wave function f+(j=0)(y), compatible with the periodicity condi-

tion along the direction y1 in eq. (A.2), is

f+(j=0)(y) =
∞∑

n=−∞
cn(y2)e

iπd
y1y2
l1l2 e

2πin
y1
l1 . (A.6)

The periodicity condition along the direction y2, eq. (A.3), implies that d must be an integer

and the coefficients cn(y2) must satisfy the periodicity condition:

cn(y2 + l2) = cn+d(y2) . (A.7)

The coefficients cn(y2) are explicitly obtained after the substitution of eq. (A.6) into

eq. (A.4), giving

∂2cn(y2) =

(
−2π d

l1l2
y2 −

2πn

l1

)
cn(y2) , (A.8)
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with solution

cn(y2) = Ane
− π d

l1l2
y2
2−

2πn
l1

y2 . (A.9)

The coefficient An is determined by the periodicity condition for the cn(y2), eq. (A.7),

implying

An+d = Ane
−π

l2
l1

(2n+d)
, (A.10)

whose solution is

An = bne
−π

l2
l1

n2

d , (A.11)

where the constants bn satisfy bn+d = bn. It exists, therefore, d arbitrary constant coeffi-

cients and, consequently, d independent solutions for the zero mode. We will characterize

them by the integer number ρ, ρ = 0, . . . , d − 1, as described in section 3.

All in all, the lightest wave function can be written as

f+(j=0)(y) =
d−1∑

ρ=0

bρ f+(j=0,ρ)(y) , (A.12)

where bρ are arbitrary coefficients subject to the normalization condition

d−1∑

ρ=0

|bρ|2 = 1 , (A.13)

and the functions f+(j=0,ρ)(y) are given by

f+(j=0,ρ)(y) =

(
2d

l31 l2

) 1
4

∞∑

n=−∞
e
− πd

l1l2
(y2+nl2+

ρl2
d

)2
e
2πi(dn+ρ)

y1
l1 e

i πd
l1l2

y1y2 . (A.14)

Notice that for d > 1 the different independent solutions f+(j,ρ)(y) are localized at different

points of the extra dimensions.

Finally, the expression of the heavier modes resulting from eq. (A.5) reads:

f+(j,ρ)(y) =

(
2d

l31 l2

) 1
4 (−i)j√

2j j!
e
i πd

l1l2
y1y2

·
∞∑

n=−∞
e
− πd

l1l2
(y2+nl2+

ρl2
d

)2
e
2πi

y1
l1

(dn+ρ)
Hj,ρ

[√
2πd

l1l2

(
y2 + nl2 +

ρl2
d

)]
,

(A.15)

with Hj,ρ(y) being the Hermite polynomials.
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B. Integrals

We summarize the integrals of the extra dimensional wave functions, necessary to explicitly

obtain the effective coefficients of the 4D theory.

• Two-field integrals:

∫

T 2

f3 (n1,n2) f3 (m1,m2)d2y = δn1,−m1 δn2,−m2 , (B.1)

∫

T 2

f+(j1,ρ1) f− (j2,ρ2)d2y = δj1,j2 δρ1,ρ2 , (B.2)

where f3 (n1,n2) and f+(j,ρ) are respectively given by eq. (3.31) and eq. (3.39).

• Three-field integrals:

if ρ2−ρ1−n1

d 6∈ Z,

I(3)[j1, ρ1, j2, ρ2, n1, n2] =

∫

T 2

f+(j1,ρ1) f− (j2,ρ2) f3 (n1,n2) d2y = 0 , (B.3)

else

I(3)[j1, ρ1, j2, ρ2, n1, n2] = l1

√
R

A2
e−2πi

ρ1n2
d , e−πi

n1n2
d e−

π
2d

(
n2
2

R
+Rn2

1)

√
j1!j2!

2j1+j2
(B.4)

×
j2∑

k=0

[
j1
2

]∑

k1=0

Min[k,j1−2k1]∑

k2=0

2k2(−1)k1 ij1+k−2k1−2k2

k1!k2!(j2−k)!(j1−2k1−k2)!(k−k2)!

×Hj1+k−2k1−2k2

[√
π

d

(
n2√
R

+ i
√

Rn1

)]
Hj2−k

[
2

√
πR

d
n1

]
,

where A = l1l2 and R = l2/l1.

• Four-field integrals with two charged and two neutral fields:

I
(4)
NC [j1, ρ1, j2, ρ2, n1, n2,m1,m2] ≡

∫

T 2

f+(j1,ρ1) f− (j2,ρ2) f3 (n1 n2) f3 (m1 m2) d2y (B.5)

= I(3)[j1, ρ1, j2, ρ2, n1 + m1, n2 + m2] .

• Four-field integrals with four charged fields:

when ρ1+ρ3−ρ2−ρ4

d 6∈ Z,

I
(4)
C [j1, ρ1, j2, ρ2, j3, ρ3, j4, ρ4] ≡

∫

T 2

f+(j1,ρ1) f− (j2,ρ2) f+(j3,ρ3) f− (j4,ρ4) d2y

= 0 , (B.6)
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else

I
(4)
C [j1, ρ1, j2, ρ2, j3, ρ3, j4, ρ4] =

√
dR

A

√
j1!j2!j3!j4!

2j1+j2+j3+j4

∞∑

p,k=−∞
e
−πdR

h

(
ρ1−ρ2

d
−k)2+(

ρ1−ρ4
d

−p)2
i

×
j1∑

k1=0

j2∑

k2=0

j3∑

k3=0

j4∑

k4=0

Min[k1,k2]∑

z1=0

Min[k3,k4]∑

z2=0

2z2−z1+k1+k2(k1+k2−2z1)!δ
k1+k2−2z1
k3+k4−2z2

z1!z2!(j1−k1)!(j2−k2)!(j3−k3)!(j4−k4)!

×
Hj1−k1

[
−

√
πdR

(
k+p+ ρ4+ρ2−2ρ1

d

)]
Hj2−k2

[
−

√
πdR

(
−k+p+ ρ4−ρ2

d

)]

(k1−z1)!(k2−z1)!(k3−z2)!(k4−z2)!

×Hj3−k3

[√
πdR

(
k+p+

ρ4+ρ2−2ρ1

d

)]
Hj4−k4

[√
πdR

(
−k+p+

ρ4−ρ2

d

)]
.

(B.7)

The integrals above are related by the following completeness relationships, which we

have checked numerically up to a precision better than 10−6.

I
(4)
C [j1, ρ1, j2, ρ2, j3, ρ3, j4, ρ4] =

∞∑

n1,n2=−∞
I(3)[j1, ρ1, j2, ρ2, n1, n2]I

(3)[j3, ρ3, j4, ρ4,−n1,−n2]

(B.8)

I
(4)
NC [j1, ρ1, j2, ρ2, n1, n2,m1,m2] =

d−1∑

ρ=0

∞∑

j=0

I(3)[j1, ρ1, j, ρ, n1, n2]I
(3)[j, ρ, j2, ρ2,m1,m2] .

(B.9)
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Erratum

The correct address of the Instituto de F́ısica Teórica is:

Instituto de F́ısica Teórica UAM-CSIC, Facultad de Ciencias C-XVI,

Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
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